Problem

Using the characteristics of Fig. 4.121, determine the following for an emitter-bias confi...

Using the characteristics of Fig. 4.121, determine the following for an emitter-bias configuration if a Q-point is defined at  and

a. RC if VCC = 24 V and RE = 1.2 kΩ.

b. β at the operating point.

c. RB.

d. Power dissipated by the transistor.

e. Power dissipated by the resistor RC.

FIG. 4.121

Step-by-Step Solution

Solution 1

(a)

Refer figure \(4.121\) from the text book.

The value of saturation voltage for amplifier is,

$$ \begin{aligned} V_{C E_{\mathrm{stt}}} &=V_{C C} \\ &=24 \mathrm{~V} \end{aligned} $$

In the transfer characteristic graph, the line obtained from \(V_{C E_{m}}\) point, and \(\mathrm{Q}\) -point will intersect the \(I_{C}\) axis at \(I_{C_{\mathrm{m}}}\).

Redraw the transfer characteristic for values.

G:\Users\Abhinav Rai\diagrams\10774-4-13P_A.jpg

Figure 1: transfer characteristic for amplifier

From figure 1, the value of saturation current \(I_{C_{\mathrm{san}}}\) is \(6.8 \mathrm{~mA}\).

From figure 1 , the base current value for corresponding value of collector current at \(4 \mathrm{~mA}\) is

\(30 \mu \mathrm{A}\)

Calculate the collector resistance is calculated as follows:

\(I_{C_{\mathrm{at}}}=\frac{V_{C C}}{R_{C}+R_{E}}\)

Substitute \(6.8 \mathrm{~mA}\) for \(I_{C_{\mathrm{m}}}, 24 \mathrm{~V}\) for \(V_{C C}\) and \(1.2 \mathrm{k} \Omega\) for \(R_{E}\) in the equation.

\(6.8 \mathrm{~mA}=\frac{24 \mathrm{~V}}{R_{C}+1.2 \mathrm{k} \Omega}\)

\(R_{C}+1.2 \mathrm{k} \Omega=\frac{24 \mathrm{~V}}{6.8 \mathrm{~mA}}\)

\(R_{C}=3.529 \mathrm{k} \Omega-1.2 \mathrm{k} \Omega\)

\(R_{C}=2.33 \mathrm{k} \Omega\)

Therefore, the collector resistance, \(R_{C}\) is \(2.33 \mathrm{k} \Omega\).

(b)

From figure 1 , the base current value for corresponding value of collector current at \(4 \mathrm{~mA}\) is

$$ 30 \mu \mathrm{A} $$

Calculate the Gain \(\beta\).

$$ \begin{aligned} \beta &=\frac{I_{C}}{I_{B}} \\ &=\frac{4 \mathrm{~mA}}{30 \mu \mathrm{A}} \\ &=133.33 \end{aligned} $$

Therefore, the value of gain is \(133.33\).

(c)

Calculate the base resistance.

\(\begin{array}{rl}R_{B} & =\frac{V_{R_{n}}}{I_{B}} \\ & =\frac{V_{C C}-V_{B E}-V_{E}}{I_{B}} \\ & =\frac{24 \mathrm{~V}-0.7 \mathrm{~V}-(4 \mathrm{~mA})(1.2 \mathrm{k} \Omega)}{30 \mu \mathrm{A}} \\ & =\frac{18.5 \mathrm{~V}}{30 \mu \mathrm{A}} \\ =6 & 6.67 \mathrm{k} \Omega\end{array}\)

Therefore, the base resistance, \(R_{B}\) is \(616.67 \mathrm{k} \Omega\).

(d)

Calculate the dissipated power \(P_{D}\).

$$ \begin{aligned} P_{D} &=V_{C E_{Q}} I_{C_{Q}} \\ &=(10 \mathrm{~V})(4 \mathrm{~mA}) \\ &=40 \mathrm{~mW} \end{aligned} $$

Therefore, the dissipated power, \(P_{D} 40 \mathrm{~mW}\).

(e)

Calculate the Power \(P\).

$$ P=I_{C}^{2} R_{C} $$

Substitute \(4 \mathrm{~mA}\) for \(I_{C}\) and \(2.33 \mathrm{k} \Omega\) for \(R_{C}\) in the equation.

$$ \begin{aligned} P &=(4 \mathrm{~mA})^{2}(2.33 \mathrm{k} \Omega) \\ &=37.28 \mathrm{~mW} \end{aligned} $$

Therefore, the value of Power \(P\) is \(37.28 \mathrm{~mW}\).

Add your Solution
Textbook Solutions and Answers Search