Question

1.Make a rough estimate of the mechanical advantage of the lever shown in the figure. In other words, for a given amount of force applied on the handle, how many times greater is the resulting force on the cork?

2.You wish to determine the mass of a ship in a bottle without taking it out. Show that this can be done with the setup shown in the figure, with a scale supporting the bottle at one end, provided that it is possible to take readings with the ship slid to several different locations. Note that you can’t determine the position of the ship’s center of mass just by looking at it, and likewise for the bottle. In particular, you can’t just say, “position the ship right on top of the fulcrum” or “position it right on top of the balance.”

null

Problem 9

0 0
Add a comment Improve this question Transcribed image text
Answer #1


We use condition the second equilibrium Eł=0 a to Pivot point at ET=Faxra + F212=0 F2=Fixa 2 Estimating values The force incr

Add a comment
Know the answer?
Add Answer to:
1.Make a rough estimate of the mechanical advantage of the lever shown in the figure. In...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Period Date Name 39 Solitary Seesaw Purpose To identify the forces, lever arms, and torques for a system in rota...

    Period Date Name 39 Solitary Seesaw Purpose To identify the forces, lever arms, and torques for a system in rotational 2 knife-edge lever clamps set of slotted masses 2 mass hangers fulcrum string or masking tape Gravity pulls on every part of an object. The average position of these pulls (the weight) is the center of gavity (CG) of the object. The sum of all these pulls is the weight of the object. The entire weight of the object is...

  • 2. (15 scores) Consider the mechanical system shown in Figure 1. A spring exerts a force...

    2. (15 scores) Consider the mechanical system shown in Figure 1. A spring exerts a force that is a function of its extension. A damper exerts a force that is a function of the velocity of the piston. Assume that the spring and the damper are both linear. (1) We want to describe the relation between the external force F(t) and the position yt) of the mass. Give the differential equation relating F(t) and y(t). Define this carefully as a...

  • 4. In the figure shown, rod AB (M-2 kg, L-2 m, center of mass C located 1 m above ground) is kept on a rough surface (H...

    4. In the figure shown, rod AB (M-2 kg, L-2 m, center of mass C located 1 m above ground) is kept on a rough surface (H-0.5). A horizontal force F = 10 N is applied to the rod at point D, and distance CD-L/3 m. This horizontal force F causes the rod to rotate about B. Find initial linear acceleration of the top-most point A of the rod. Figure inset shows moment of inertia of a rod. Ignore air...

  • Consider the electromechanical dynamic system shown in Figure 1(a). It consists of a cart of mass...

    This assignment is for my Engr dynamics systems class. Consider the electromechanical dynamic system shown in Figure 1(a). It consists of a cart of mass m moving without slipping on a linear ground track. The cart is equipped with an armature-controlled DC motor, which is coupled to a rack and pinion mechanism to convert the rotational motion to translation and to create the driving force for the system. Figure 1(b) shows the simplified equivalent electric circuit and the mechanical model...

  • A vibration isolation system for a 1-DOF mechanical system is shown below. Displacement of the mass...

    A vibration isolation system for a 1-DOF mechanical system is shown below. Displacement of the mass x is measured from the static equilibrium position and the system parameters are m = 0.3 kg. k=10N/m, b = 4.4 Ns/m, and by = 0.5 Ns/m. Fixed 1. TI W Fixed base Figure / sehen voulon tem a) Derive the mathematical model of the system. Make sure you have the FBD and all equations and signs are properly showcased. b) Use the system...

  • winkngs spring i(t) v(t) st VEE Figure 1: (a)Solenoid with retu spring. (b) Equivalent lumped electrical cireuit (...

    winkngs spring i(t) v(t) st VEE Figure 1: (a)Solenoid with retu spring. (b) Equivalent lumped electrical cireuit (e) Equivalent mechanical diagram Figure 1(a) illustrates a solenoid with a return spring The voltage e(t) across the winding, causes a current it) to flow through the winding. which in turn generates a magnetic field The magnetic field induces a force f(t) on the plunger mass, . The magnitude of this force is related to the current in the windings via the solenoid's...

  • Please help me figure out if I am doing these right or not and help me...

    Please help me figure out if I am doing these right or not and help me figure out what I have not answered yet Part L. Use the four diagrams below to answer some questions about torque. Each of the arrows force of 50 newtons applied to the edge of a wheel. Each wheel can rotate around an axis each wheel is 0.1 located at the center of the wheel and pointing in and out of the page. The radius...

  • Ultrasonic motion sensor Pre - laboratory Assignment In experiments 1 and 2, you will use a...

    Ultrasonic motion sensor Pre - laboratory Assignment In experiments 1 and 2, you will use a cart, track, and motion detector like those Spring bumper illustrated in Figure 1 to validate the work-energy theorem end examine the conversation of mechanical energy principle. Sonar reflector Cart Track Data acquisition TC Leveling jacks Figure 1. Experimental setup used in Lab #6 Consider the following exercises/questions relevant to experiments 1 and 2. Question 1. Show that the kinematics equation 12 - v2 =...

  • Need the exercise portion Hit the Ski Slopes EXAMPLE 5.8 GOAL Combine conservation of mechanical energy...

    Need the exercise portion Hit the Ski Slopes EXAMPLE 5.8 GOAL Combine conservation of mechanical energy with the work-energy theorem involving friction on a horizontal surface. h = 20.0 m у A skier starts PROBLEM from rest at the top of a frictionless incline of height (В С) 20.0 m, as in the figure. At the bottom of the incline, the skier The skier slides down the slope and onto a level surface, stopping after encounters a horizontal traveling a...

  • In Explorations 1 and 2, we have been focusing on the direction of the force on...

    In Explorations 1 and 2, we have been focusing on the direction of the force on a current- carrying wire. It is obtained by using a right hand rule. Make sure you understand the right hand rule and how to use it to determine the direction of the force on a current- carrying wire when the direction of the magnetic field and the current are known. The magnitude of the force on a current-carrying wire is given by F =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT