Question

object lens The figure showsanobject near a thin lens, and one ofthe rincipal rays. The tickmarks are 4 cm apart. 12. [1pt] From the diagram, find the focal length of the lens. You have only 2 tries! No more tries. 13.[Ipt] Calculate the magnification of the lens. Answer: Not yet correct, tries 2/15 Submit All Answers

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
object lens The figure showsanobject near a thin lens, and one ofthe rincipal rays. The tickmarks...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The figure below shows a thin converging lens for which the radii are R1 = 9.32...

    The figure below shows a thin converging lens for which the radii are R1 = 9.32 cm and R2 = -11.4 cm. The lens is in front of a concave spherical mirror of radius R = 7.92 cm. If its focal points F1 and F2 are 4.60 cm from the vertex of the lens: a) Determine its index of refraction. b) If the lens and mirror are 19.7 cm apart and an object is placed 8.21 cm to the left...

  • webassign.net Active Figure 26.25 Thin Lenses The animation below shows a thin lens, an object (blue...

    webassign.net Active Figure 26.25 Thin Lenses The animation below shows a thin lens, an object (blue arrow) and an image (tan arrow). Three rays are shown that locate the positic orientation, and size of the image. Readouts are provided for object distance, object height, image distance and image height. Instructions: Click and drag the blue object. Click the button in the lower left of the applet window to toggle between a conc convex lens. Explore Images formed by thin lenses...

  • An object is placed 14.0 cm in front of a lens of focal length 5.08 cm....

    An object is placed 14.0 cm in front of a lens of focal length 5.08 cm. Another lens of focal length 4.48 cm is placed 1.83 cm past the first lens. Where is the final image (how far past the lens with focal length 4.48 cm)? 2.59 cm You are correct. Your receipt no. is 158-1618 Priwinuti Tiit Is it real or virtual? Incorrect The image is virtual Correct: The image is real You are correct. Your receipt no. is...

  • 1.) Parallel light rays pass through a concave lens as illustrated in figure 1. Using the...

    1.) Parallel light rays pass through a concave lens as illustrated in figure 1. Using the diagram, indicate the focal point of this lens. 2.) A convex lens has a focal length of 100 mm. The lens produces an image from an object placed 50 cm from the lens. Determine the distance from the lens to the image in the magnification of the image. Figure 1: Concave lens

  • An object is on the left side of a thin converging lens. The object is located...

    An object is on the left side of a thin converging lens. The object is located at a distance of 6 cm away from a thin converging lens with focal length of 2 cm. Use the thin lens equation (1/f = 1/s' + 1/s) to predict the following: (a) Location of the image? (b) Magnification of the image (including inverted versus non-inverted)? (c) Real or virtual? Draw diagram please!

  • A concave lens refracts parallel rays in such a way that they are bent away from...

    A concave lens refracts parallel rays in such a way that they are bent away from the axis of the lens. For this reason, a concave lens is referred to as a diverging lens. Part A Consider the following diagrams, where F represents the focal point of a concave lens. In these diagrams, the image formed by the lens is obtained using the ray tracing technique. Which diagrams are accurate?(Figure 1) (Figure 2) (Figure 3) (Figure 4) Type A if...

  • 3. Figure shows an object and its image formed by a thin lens. (a) What is...

    3. Figure shows an object and its image formed by a thin lens. (a) What is the focal length of the lens and what type of lens (converging or diverging) is it? (b) What is the height of the image? Is it real or virtual? Draw a principal-ray diagram showing the formation of the image. -35.0 cm- Optic Object 15 Lens El crn Image 4. Figure shows an object and its image formed by a thin lens. (a) What is...

  • 2. A thin converging lens has a focal length of 10.0 cm. An object is placed...

    2. A thin converging lens has a focal length of 10.0 cm. An object is placed 30.0 cm from this lens. Use a sheet of the graph paper provided at the back of this manual to draw a ray diagram that shows the image formed by this lens. Use any two of the three principal (or special) rays and an appropriate scale. Hint: you could let 1 cm on your ray diagram represent 5 cm of the actual measurements:this scale...

  • 2. A thin converging lens has a focal length of 10.0 cm. An object is placed...

    2. A thin converging lens has a focal length of 10.0 cm. An object is placed 30.0 cm from this lens. Use a sheet of the graph paper provided at the back of this manual to draw a ray diagram that shows the image formed by this lens. Use any two of the three principal (or special) rays and an appropriate scale. Hint: you could let I cm on your ray diagram represent 5 cm of the actual measurements:this scale...

  • A 4.0-cm tall object is placed 50.0 cm from a diverging lens having a focal length...

    A 4.0-cm tall object is placed 50.0 cm from a diverging lens having a focal length of magnitude 25.0 cm. Draw the ray diagram for this situation. What is the location and height of the image? Is the image real or virtual? • Draw an optical axis with the lens centered on the axis. Represent the object at the correct distance from the lens • Draw the three "special rays" from the top of the object • Extend the rays...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT