Question

density (kg/m) viscosity (cp mPa s) VISCOsI water 20°C air 20°C 1000 1.204 1090 1.03 02217 250,000 eanut butter[5] Many microscopic organisms and small multi-cell creatures who live (and move) in water move by using flagella or shorter cilia moving in a wavelike fashion to push against the water. A large paramecium can have a radius of 0.5 mm. and can move at speeds up to 1mm/s. Calculate the Reynolds number for these wee beasties

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ean

Add a comment
Know the answer?
Add Answer to:
density (kg/m) viscosity (cp mPa s) VISCOsI water 20°C air 20°C 1000 1.204 1090 1.03 02217...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • density (kg/m) viscosity (cp mPa s) VISCOsI water 20°C air 20°C 1000 1.204 1090 1.03 02217...

    density (kg/m) viscosity (cp mPa s) VISCOsI water 20°C air 20°C 1000 1.204 1090 1.03 02217 250,000 eanut butter [4] For a blue whale, a fast speed is 13.9 m/s and the radius for their cross-section is 1.9 meters. Calculate the Reynolds number.

  • density (kg/m) viscosity (cp mPa s) VISCOsI water 20°C air 20°C 1000 1.204 1090 1.03 02217...

    density (kg/m) viscosity (cp mPa s) VISCOsI water 20°C air 20°C 1000 1.204 1090 1.03 02217 250,000 eanut butter Paper Homework 3 Viscosity and Flow. Learning Objectives: 1. Gain a feel for the Reynolds number for typical situations. 2. Determine type of flow from the Reynolds number. Calculate the Reynolds number, Re - (2rpv)/ n, for the following situations and decide whether the flow of fluid around them is laminar or turbulent. Then calculate the frag force using the appropriate...

  • Calculate the Reynolds number, Re = (2rρv)/ η , for the following situations and decide whether...

    Calculate the Reynolds number, Re = (2rρv)/ η , for the following situations and decide whether the flow of fluid around them is laminar or turbulent. Then calculate the frag force using the appropriate formula. For the radius, use r = 2(Area/perimeter) which, for a circle, gives the radius. Densities and viscosities are in the table on page 2. Also, to keep things uniform, we will use the boundaries for laminar and turbulent flow from Engineer's Toolbox, also on pg....

  • Calculate the Reynolds number, Re- (2rpv)/ n, for the following situations and decide whether the flow...

    Calculate the Reynolds number, Re- (2rpv)/ n, for the following situations and decide whether the flow of fluid around them is laminar or turbulent. Then calculate the frag force using the appropriate formula. For the radius, use r 2(Area/perimeter) which, for a circle, gives the radius. Densities and viscosities are in the table on page 2. Also, to keep things uniform, we will use the boundaries for laminar and turbulent flow from Engineer's Toolbox, also on pg. 2 [1] A...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT