Question

The condenser downstream of the turbine in a large Rankine cycle power plant is constructed of...

The condenser downstream of the turbine in a large Rankine cycle power plant is constructed of 30,000 25-mm tubes. The steam condenses at 50 ºC with a heat transfer coefficient of 9,000 W/m2 ·K on the outside the tubes. The cooling water enters the tube side of the condenser at 20 ºC at a flow rate of 17,000 kg/s. For a 1000 MW (net) power output and a cycle thermal efficiency of 42%, determine: a. the cooling rate required (in MW) b. the outlet temperature of the cooling water (in ºC) c. the length of tubing required (in m)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The condenser downstream of the turbine in a large Rankine cycle power plant is constructed of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • . A steam power plant that operates on Rankine cycle has a net power output of...

    . A steam power plant that operates on Rankine cycle has a net power output of 45 MW. Steam enters the turbine at 7 MPa and 500o C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a sea through the tubes of the condenser at rate of 2000 kg/s. Show the cycle on T‐s diagram with respect to saturation line, and determine (a) the thermal efficiency of the cycle, (b) the...

  • Consider a steam power plant that operales on a simple ideal Rankine cycle and has a...

    Consider a steam power plant that operales on a simple ideal Rankine cycle and has a net power output of 45 MW Steam enters the turbine at 7 MPa and 500 C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser at a rate of 2000 kg/s. Use T-s diagram with respect to saturation lines, and determine (a) the thermal eMooncy ofthe cycle (%)...

  • A combined gas-steam power plant uses a simple gas turbine for the topping cycle and a...

    A combined gas-steam power plant uses a simple gas turbine for the topping cycle and a simple Rankine cycle for the bottoming cycle. Atmospheric air enters the compressor at 101 kPa and 20 °C, and the maximum gas cycle temperature is 1100 °C. The compressor pressure ratio is 8. The gas stream leaves the heat exchanger at the saturation temperature of the steam flowing through the heat exchanger. Steam enters the heat exchanger at a pressure of 6 MPa and...

  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • Consider a power plant with water as the working fluid that operates on a Rankine cycle....

    Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW. Superheated steam enters the turbine at 8 MPa and 600°C (h = 3642 kJ/kg; s = 7.0206 kJ/kg K) and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. The isentropic efficiency of the turbine is 85%. The pump has...

  • 2. Ideal Rankine cycle. The condenser pressure is 4 psia. Steam goes into turbine at 1100F...

    2. Ideal Rankine cycle. The condenser pressure is 4 psia. Steam goes into turbine at 1100F and 1300 psia. The mass flow rate of steam is 2,000,000 lb/h. Cooling water from a lake flows through the condenser at 95,000,000 lb/hr and comes into the condenser at 63F. Determine: a) The net power made (BTU/h) b) Rate of heat transfer in the condenser (BTU/h) c) Overall thermal efficiency (%) d) The outlet temperature of the cooling water (F)

  • Steam is the working fluid in a simple, ideal Rankine cycle. Saturated vapor enters the turbine...

    Steam is the working fluid in a simple, ideal Rankine cycle. Saturated vapor enters the turbine at 8 MPa and saturated liquid exits the condenser at a pressure of 8 kPa. The net power output of the cycle is 100 MW. Determine for the cycle: i. Thermal efficiency ii. Back work ratio iii. Mass flow-rate of the steam in kg/h iv. Rate of heat transfer to the working fluid as it passes through the boiler in MW v. Rate of...

  • A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop...

    A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop net cycle power of 3 MW. Steam exits the reactor core at 100 bar, 52O degree C and expands through the turbine to the condenser pressure of 1 bar. Saturated liquid exits the condenser and is pumped to the reactor pressure of l00 bar. Isentropic efficiencies of the turbine and pump are 81% and 78%, respectively. Cooling water enters the condenser at 15 degree...

  • Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW

    Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW. Superheated steam enters the turbine at 8 MPa and 600°C (h = 3642 kJ/kg; s = 7.0206 kJ/kg K) and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. The isentropic efficiency of the turbine is 85%. The pump has...

  • A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler...

    A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler at 3 MPa and 500° C. The turbine exit is at 40 kPa. Isentropic efficiencies of the turbine and pump are 75% and 70% respectively. Show the cycle on a T-s diagram Calculate the mass flow rate of steam Determine the heat transfer rates in the boiler and condenser in MW Determine the cycle efficiency Determine the mass flow rate of the condenser cooling...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT