Question

Calculate the change in entropy when one mole of metallic aluminum is heated at one bar pressure from an initial temperature

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Data: AS? A: 1 mol T = 25°C + 273 = 298 K T, = 750° + 273 = 1023 K Ce A (s) = 29.2 J/ mol K Ce A 0 = 31.75 J/mol K 4A (Latent

Add a comment
Know the answer?
Add Answer to:
Calculate the change in entropy when one mole of metallic aluminum is heated at one bar...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Calculate the change in entropy when one mole of metallic aluminum is heated at one bar...

    Calculate the change in entropy when one mole of metallic aluminum is heated at one bar pressure from an initial temperature of 25 ℃ to a final temperature of 750 ℃. The molar heat capacities of solid and liquid aluminum at one bar pressure are 29.2 J mol-1 K-1 and 31.75 J mol-1 K-1, respectively. The specific enthalpy of fusion of aluminum at its melting point (660.46 ℃) is 396.57 J g-1. The molar mass of aluminum is 26.98 g...

  • Physical Chemistry Calculate the change in entropy when one mole of metallic aluminum is heated at...

    Physical Chemistry Calculate the change in entropy when one mole of metallic aluminum is heated at one bar pressure from an initial temperature of 25 °C to a final temperature of 750 °C. The molar heat capacities of solid and liquid aluminum at one bar pressure are 29.2 J mol K1 and 31.75 J mol K, respectively. The specific enthalpy of fusion of aluminum at its melting point (660.46 °C) is 396.57 J g1. The molar mass of aluminum is...

  • Please do not copy the answer from others! Thank you! Calculate the change in entropy when...

    Please do not copy the answer from others! Thank you! Calculate the change in entropy when one mole of metallic aluminum is heated at one bar pressure from an initial temperature of 25 °C to a final temperature of 750 °C. The molar heat capacities of solid and liquid aluminum at one bar pressure are 29.2 J mol-1 k-and 31.75 J mol-1 k1, respectively. The specific enthalpy of fusion of aluminum at its melting point (660.46 °C) is 396.57 Jg7....

  • 1. a) Calculate the change in entropy (AS) when one mole of diamond is heated from...

    1. a) Calculate the change in entropy (AS) when one mole of diamond is heated from a temperature of 0 K to 400 K at a constant pressure of 1 bar. The temperature-dependent heat capacity of diamond is C 2.9x10 T J/(mol K), where T is the absolute temperature in K. b) Given that the entropy of diamond is zero at 0 K, calculate its absolute molar entropy (S) at 400 K from the above result.

  • Calculate the entropy change when 72.00 g of ice, at 273.2 K and 1.000 bar pressure,...

    Calculate the entropy change when 72.00 g of ice, at 273.2 K and 1.000 bar pressure, is melted and then heated to 298.2 K. The enthalpy of fusion of ice is 6.009 kJ/mole and the heat molar heat capacity of water at 1.000 atm is 75.43 J/ K mole Please help! Can't figure this homework problem out.

  • The molar enthalpy of fusion of solid bismuth is 11.0 kJ mol-1, and the molar entropy...

    The molar enthalpy of fusion of solid bismuth is 11.0 kJ mol-1, and the molar entropy of fusion is 20.2 J K-1 mol-1. (a) Calculate the Gibbs free energy change for the melting of 1.00 mol of bismuth at 575 K. kJ (b) Calculate the Gibbs free energy change for the conversion of 5.12 mol of solid bismuth to liquid bismuth at 575 K. kJ (c) Will bismuth melt spontaneously at 575 K? (d) At what temperature are solid and...

  • Calculate the change in entropy that occurs when 18.02 g of ice at –17.5°C is placed...

    Calculate the change in entropy that occurs when 18.02 g of ice at –17.5°C is placed in 90.08 g of water at 100.0°C in a perfectly insulated vessel. Assume that the molar heat capacities for H2O(s) and H2O(l) are 37.5 J K^-1 mol^-1 and 75.3 J K^-1 mol^-1, respectively, and the molar enthalpy of fusion for ice is 6.01 kJ/mol. Change in entropy = ______J/K

  • The enthalpy of fusion of cadmium at its normal melting point of 321 °C is 6.11...

    The enthalpy of fusion of cadmium at its normal melting point of 321 °C is 6.11 kJ mol? What is the entropy of fusion of cadmium at this temperature? ASfus = J mol-K-1 The molar enthalpy of fusion of solid cadmium is 6.11 kJ mol-1, and the molar entropy of fusion is 10.3 JK+mol-1. (a) Calculate the Gibbs free energy change for the melting of 1.00 mol of cadmium at 622 K. (b) Calculate the Gibbs free energy change for...

  • I would really appreciate your help. God bless you Question 4 The molar enthalpy of fusion of ice at 0 °C and 1 atm...

    I would really appreciate your help. God bless you Question 4 The molar enthalpy of fusion of ice at 0 °C and 1 atm pressure is 6024 J mol. The molar heat capacities at constant pressure of ice and water are 37.65 J Kmol and 75.30 J Kmol respectively, and may be taken as constant over the temperature range 0 to -20°C. Consider 2 mole of liquid water supercooled to -20 °C, which is allowed to freeze isothermally from liquid...

  • Entropy of naphthalene: Consider naphthalene C10H8 at atmospheric pressure. It is a solid with a melting...

    Entropy of naphthalene: Consider naphthalene C10H8 at atmospheric pressure. It is a solid with a melting point at 80.1 degrees Celsius and a boiling point at 218 degrees Celsius. The latent heat of fusion is 19,123 kJ / mol. The molar heat at constant pressure of solid naphthalene has a functional temperature dependence (in K) which is linear. Its value is 0 at T = 0 K and 188.41 J / mol-K at T = 317.15 K. The molar heat...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT