Question

(d) For what values of m (in kg) would standing waves with the next four higher numbers of nodes be observed in this case? X kg kg x kg x kg 2 Enter a number ma=1 m =In the arrangement shown below, an object can be hung from a string (with linear mass density -0.00200 kg/m) that passes over a light pulley. The string is connected to a vibrator (of constant frequency and the length of the string between point P and the pulley is L1.70 m. When the mass m of the object is either 9.0 kg or 16.0 kg, standing waves are observed; no standing waves are observed with any mass between these values, however Vibraton TN

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(d) The mass values are given as follows: 16 kg т, (2) -4 kg 16 kg т, (3) 1.7 kg 16 kg т, (4) 2 =1 kg 16 kg т, (5) = 0.64 kg

Add a comment
Know the answer?
Add Answer to:
(d) For what values of m (in kg) would standing waves with the next four higher...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • parts c and d please steps would be helpful in the arrangement shown below, an object...

    parts c and d please steps would be helpful in the arrangement shown below, an object can be hung from a sting with linear mass density μ 0.00200 kg m that passes over a light pulley. The string is connected to a vibrator of constant frequency and the length of the string between polnt P and the pulley Iis L 1.90 m. When the mass m of the object is elther 25.0 ka or 36.0 kg, standing waves are observed;...

  • In the arrangement shown below, an object can be hung from a string (with linear mass...

    In the arrangement shown below, an object can be hung from a string (with linear mass density μ = 0.002 00 kg/m) that passes over a light pulley. The string is connected to a vibrator (of constant frequency f), and the length of the string between point P and the pulley is L = 2.30 m. When the mass m of the object is either 9.0 kg or 16.0 kg, standing waves are observed; no standing waves are observed with...

  • In the arrangement shown in the figure below, an object of mass m = 2.0 kg...

    In the arrangement shown in the figure below, an object of mass m = 2.0 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L = 2.0 m. (Ignore the mass of the vertical section of the cord.) (a) When the vibrator is set to a frequency of 140 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord?...

  • 4) In the Standing Waves experiment, the length of the string between the pulley and vibrator is ...

    4) In the Standing Waves experiment, the length of the string between the pulley and vibrator is 135 cm, the suspended mass is 160 g, the mass of a piece of the string of 10 m-length is 7.3 g.A student observes a standing wave of mode four. What is the vibrator's frequency? 4) In the Standing Waves experiment, the length of the string between the pulley and vibrator is 135 cm, the suspended mass is 160 g, the mass of...

  • One end of horizontal string of linear density  kg/m is attached to a small amplitude 60-Hz vibrator....

    One end of horizontal string of linear density  kg/m is attached to a small amplitude 60-Hz vibrator. The string passes over a pulley, a distance 1.40 m away and weights are hung from this end.  What mass must be hung from this end of the string to produce (a) one loop, (b) two loops, (c) five loops of a standing wave. Assume that the end of the string with the vibrator is a node, which is nearly true. (d) Why can the...

  • I have questions 2-4 but I am confused on question 5 string what is the speed...

    I have questions 2-4 but I am confused on question 5 string what is the speed of waves traveling on this string? Show your work. Thu veloit ve(ouiry in Shing undir tenion 3.25 10 m V82.4 mlS 3. Suppose the string of question 2 is used in a run in this experiment. The length of string between the string vibrator and pulley is measured to be 1.120m. When 750g are hung off of this string, 5 nodes are seen between...

  • In the arrangement shown in the figure below, an object of mass m =4.00 kg hangs...

    In the arrangement shown in the figure below, an object of mass m =4.00 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L = 2.00 m. (Ignore the mass of the vertical section of the cord.) (a) When the vibrator is set to a frequency of 166 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord? kg/m...

  • An object with the mass m= 2.0 kg hangs from a cord around a light pulley....

    An object with the mass m= 2.0 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L= 2.0 m (Ignore the mass of the vertical section of the cord) a) When the vibrator is set to a frequency of 160 Hz, a standing wave with six loops is formed. What must be the linear mass density of the cord in kg/m? b) How many loops (if any) will...

  • In the arrangement shown in the figure below, an object of mass m4.0 kg hangs from...

    In the arrangement shown in the figure below, an object of mass m4.0 kg hangs from a cord around a light pulley. The length of the cord between point P and the pulley is L 2.0 m. (Ignore the mass of the vertical section of the cord.) Vibrator (a) When the vibrator is set to a frequency of 180 Hz, a standing wave with six loops is formed. what must be the linear mass density of the cond?" kg/m (b)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT