Question

Part B Check all the correct statements. Note: Push yourself to understand why these statements are true or false. If false t

Part D Now consider an isothermal expansion of a real gas. We always assume that densities are moderated (i e. attractive for

Part E Continue thinking about an isothermal expansion of a real gas. Check all the correct statements. Note: Push yourself t

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer :

In isothermal expansion of gases w < 0

Explanation: as w = -pdV

                       where p is pressure which is always positive, and in expansion dV ( infinitisimal small change in volume) is positive, which makes w < 0

Since at constant temperature (in isothermal processes) internal energy remains constant

and Change in internal energy = \DeltaU = w + q = 0 so it gives w = -q or q = -w

and if w is less than zero and w = -q then consequently q must be greater than zero

So our answer is

q > 0, w < 0 and q = -w

Add a comment
Know the answer?
Add Answer to:
Part B Check all the correct statements. Note: Push yourself to understand why these statements are...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Learning Goal Internal Energy of an ideal gas The internal energy of a system is the...

    Learning Goal Internal Energy of an ideal gas The internal energy of a system is the energy stored in the system. In an ideal gas, the internal energy includes the kinetic energies (translational and rotational) of all the molecules, and other energies due to the interactions among the molecules. The internal energy is proportional to the Absolute Temperature T and the number of moles n (or the number of molecules N). n monatomic ideal gases, the interactions among the molecules...

  • (17%) Problem 4: A monatomic ideal gas is in a state with volume of Vo at...

    (17%) Problem 4: A monatomic ideal gas is in a state with volume of Vo at pressure Po and temperature T . The following questions refer to the work done on the gas, W- -PA 17% Part (a) The gas undergoes an isochoric cooling from its initial state (I-Po-T0). For this process, choose what happens to the energy heat, and work from the following Grade Summary Deductions Potential 100% 0% Submissions OAU > 0, Δυ-o-w. Q < 0, and w...

  • Part A An ideal gas expands through an adiabatic process. Which of the following statements is/are true? Check all that...

    Part A An ideal gas expands through an adiabatic process. Which of the following statements is/are true? Check all that apply. Check all that apply. The work done by the gas is negative, and heat must be added to the system. The work done by the gas is positive, and no heat exchange occurs. The internal energy of the system has increased. The internal energy of the system has decreased. SubmitHintsMy AnswersGive UpReview Part Incorrect; Try Again; 5 attempts remaining...

  • A monatomic ideal gas undergoes isothermal expansion from 0.08 m3 to 0.22 m3 at a constant...

    A monatomic ideal gas undergoes isothermal expansion from 0.08 m3 to 0.22 m3 at a constant temperature (initial pressure is 310 kPa). What are its (a) internal energy change (ΔEΔE), (b) net heat transfer (Q), and (c) net work done (W)? Use negative quantity for heat transfer out of the system or work done on the system.

  • Which of these statements are true? -The internal energy of any gas depends only the temperature...

    Which of these statements are true? -The internal energy of any gas depends only the temperature of the system. - The internal energy of a gas always increases with temperature -The heat capacity of a monoatomic ideal gas is always smaller than the heat capacity of a polyatomic ideal gas. - q = 0 for any process that does not result in a change in temperature.

  • Which of the following statements does not apply to the definition of an ideal gas? Group...

    Which of the following statements does not apply to the definition of an ideal gas? Group of answer choices a. Intermolecular interactions are negligible. b. The Gibbs free energy only depends upon the temperature. c. The enthalpy only depends upon the temperature. d. The internal energy only depends upon the temperature. e. None. The previous answers are all correct. Consider a solid substance. Which of the following expressions is wrong? Group of answer choices a. Internal energy increases when the...

  • PROBLEM 1: (50 pts) Consider the following isothermal monatomic ideal gas expansion processes: gradual (reversible) decrease...

    PROBLEM 1: (50 pts) Consider the following isothermal monatomic ideal gas expansion processes: gradual (reversible) decrease in pressure from P, to Pa, such that the internal and external pressures remain in equilibrium at every step along the path. a) (20 pts) Obtain expressions for AU, W, AS, and Au for the above process (express your results as functions of n, T, P, and/or P2) b) (10 pts) Calculate the work exchanged (in J) in the process, assuming that n=1 mole,...

  • One mole of an ideal mono-atomic gas is in a state A characterized by a temperature...

    One mole of an ideal mono-atomic gas is in a state A characterized by a temperature TA. The gas is then subjected to a succession of three quasi-static reversible processes: An isothermal expansion A → B, which increases the volume by a factor y. The expansion factor is therefore y = VB / VA> 1. An adiabatic compression B → C which increases the pressure by a factor w. The compression factor is w = pC / pB> 1. A...

  • Obtain heat q and work w given to an ideal gas (1 moD system and the...

    Obtain heat q and work w given to an ideal gas (1 moD system and the ehange of the internal energy Au in the following processes. Heat capacity at constant volume, G, of the gas does not 1. AU in t A reversible isothermal expansion from (P. V.,T) to (P, V, r). reversibly at constant volume from (Pvv2,T) to (p,y, ) depend on temperature. a) b) A reversible adiabatic expansion from (P, V.T) to (P, V, T2) and then heating...

  • One mole of an ideal gas undergoes a reversible adiabatic expansion from T_1, to T_2 while...

    One mole of an ideal gas undergoes a reversible adiabatic expansion from T_1, to T_2 while tripling the volume of the gas. What is the relation between T_1 and T-2? T-2/3 < T_1<T_2 T_2/3 < T_1 < T-2 T_1= T_2 T_2<T_1 T_1 lessthanorequalto T_2/3 One mole of Ar gas undergoes the reversible transformation shown. Assuming Ar behaves ideally, which statement is true for step 2? Delta U= C_p DeltaT DeltaH < Delta U Delat S= c_p ln(T_c/T_B) W = etaRt...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT