Question

1. a) A piston–cylinder assembly contains air, initially at 1.9 bar, 295 K, and a volume...

1.

a)

A piston–cylinder assembly contains air, initially at 1.9 bar, 295 K, and a volume of 0.6 m3. The air undergoes a process to a state where the pressure is 1 bar, during which the pressure–volume relationship is pV = constant. Assuming ideal gas behavior for the air, determine the mass in kg.

b)

Argon contained in a closed, rigid tank, initially at 51.1°C, 2.1 bar, and a volume of 2.9 m3, is heated to a final pressure of 7.1 bar. Assuming the ideal gas model with k = 1.51 for the argon, determine the heat transfer, in kJ.

Can you plis solved and show me step by step this problem. Im having a hard time with this topic, thank you! If little notes can be provided or explanation can be given I would be really grateful, I really want to learn how to do it.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1. Page ① all formulas at the o end of I will provide the solution. - 0@ system Initial conditions libar = 100 kPa) Pi= 1.9 bPage ① Augon nos 1.51 Given Initial conditions Pi= 2.1 bara 210 kPa V = 2.9 m3 T1 = 5ijºc=51.1+273 T = 324.1 ķ final conditioPage ① i Heat transter 110 XL Q=1.4-151] [1210X27.9)-1 (1.4-1 J L 101-1 = 60.275) *(-607.333) Q 2167.01 les Heat ofequüved toEQ < : Scanned by CamScanner NOTE! - wolie done by the system = tve woolle done on the system a ve # cloned system codlk ( |EQ < : Ler * clockwise - wolk prodering device Anti-clock wire =) wolk absorbing device Scanned by CamScanner procen! Heat -

Add a comment
Know the answer?
Add Answer to:
1. a) A piston–cylinder assembly contains air, initially at 1.9 bar, 295 K, and a volume...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air contained in a piston-cylinder assembly, initially at 2 bar, 200 K, and a volume of 1 L, unde...

    Air contained in a piston-cylinder assembly, initially at 2 bar, 200 K, and a volume of 1 L, undergoes a process to a final state where the pressure is 8 bar and the volume is 2 L During the process, the pressure-volume relationship is linear. Assuming the ideal gas model for the air, determine the work and heat transfer, each in kJ. 4. Air contained in a piston-cylinder assembly, initially at 2 bar, 200 K, and a volume of 1...

  • 3.111 Air contained in a piston-cylinder assembly contains air, initially at 2 bar, 300 K and...

    3.111 Air contained in a piston-cylinder assembly contains air, initially at 2 bar, 300 K and a volume of 2 m^3. The air undergoes a process to a state where pressure is 1 bar, during which the pressure-volume relationship is PV=constant. Assuming ideal gas behavior for air, determine the mass of the air, in kg and the work and heat transfer, each in KJ.

  • A rigid tank whose volume is 3 m3, initially containing air at 1 bar, 295 K,...

    A rigid tank whose volume is 3 m3, initially containing air at 1 bar, 295 K, is connected by a valve to a large vessel holding air at 6 bar, 295 K. The valve is opened only as long as required to fill the tank with air to a pressure of 6 bar and a temperature of 320 K. Assuming the ideal gas model for the air determine the heat transfer between the tank contents and the surroundings, in kl....

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • 1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of...

    1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of 4.2 m3, is heated to a final pressure of 9.4 bar. Assuming the ideal gas model with k = 1.6 for the argon, determine the heat transfer, in kJ. 2.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 223°C from a pressure of 5.4 bar to a pressure of 1.9 bar. Evaluate the work, in kJ/kg. 3.A mass of 4 kilograms...

  • A piston-cylinder assembly contains propane, initially at 27 °C, 1 bar, and a volume of 0.2...

    A piston-cylinder assembly contains propane, initially at 27 °C, 1 bar, and a volume of 0.2 m3 . The propane undergoes a process to a final pressure of 6 bar, during which the pressure-volume relationship is pV1.1 = constant. For the propane, evaluate the work and heat transfer, each in kJ. Kinetic and potential energy effects can be ignored. Problem 10. A piston-cylinder assembly contains propane, initially at 27 'C, 1 bar, and a volume of 0.2 m2. The propane...

  • Air contained in an insulated piston-cylinder assembly, initially at 8 bar, 377 °C and a volume...

    Air contained in an insulated piston-cylinder assembly, initially at 8 bar, 377 °C and a volume of 0.60 m3, expands to a pressure of 2 bar. Model the air as an ideal gas with constant specific heats. a. Sketch process on a p-v and T-s diagram. Clearly indicate accessible states allowed by 2nd Law. T V b. Determine the maximum work of the expanding air (both magnitude and direction). Justify using the laws of thermodynamics. c. If the actual work...

  • Work and Heat Transfer in KJ please Problem 3.076 SI Air contained in a piston-cylinder assembly,...

    Work and Heat Transfer in KJ please Problem 3.076 SI Air contained in a piston-cylinder assembly, initially at 2 bar, 200 K, and a volume of 1 L, undergoes a process to a final state where the pressure is 7.5 bar and the volume Is 2 L. During the process, the pressure-volume relatlonshlp Is lInean Assuming the ideal gas model for the alr, determine the work and heat transfer, each In k)

  • A frictionless piston-cylinder device contains air at 300 K and 1 bar and is heated until...

    A frictionless piston-cylinder device contains air at 300 K and 1 bar and is heated until its volume doubles and the temperature reaches 600 K. Answer the following: A. You are interested in studying the air in the piston-cylinder device as a closed system. Draw a schematic of your device and the boundary that defines your system. Assume the cylinder is in horizontal position. B. Determine the final pressure of the air at the end of the process, in bar....

  • A piston-cylinder assembly fitted with a slowly rotating paddle wheel contains 0.19 kg of air, initially...

    A piston-cylinder assembly fitted with a slowly rotating paddle wheel contains 0.19 kg of air, initially at 300 K. The air undergoes a constant-pressure process to a final temperature of 440 K. During the process, energy is gradually transferred to the air by heat transfer in the amount 12 kJ. Assuming the ideal gas model with k = 1.4 and negligible changes in kinetic and potential energy for the air, determine the work done by the paddle wheel on the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT