Question

For a certain electromagnetic wave traveling in +z direction in free space, if the electric field...

For a certain electromagnetic wave traveling in +z direction in free space, if the electric field vector points in the -y direction and by using an EM filter we can alter the direction to the +x direction, which components would best describe the direction of the magnetic field vector before and after the change?

+x, -y
-x, -y
+x, +y
-x, +y
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
For a certain electromagnetic wave traveling in +z direction in free space, if the electric field...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The electric field of an electromagnetic wave points in the negative y-direction. At the same time,...

    The electric field of an electromagnetic wave points in the negative y-direction. At the same time, the magnetic field of this wave points in the negative x-direction. In what direction is the wave traveling? +x-direction -x-direction +y-direction -y-direction +z-direction -z-direction Find the frequency of blue light with a wavelength of 454 nm. Hz What is the rms value of the electric field in a sinusoidal electromagnetic wave that has a maximum electric field of 94 V/m? V/m

  • 8. The y-component of the electric field of an electromagnetic(EM) field traveling in the x-direction through...

    8. The y-component of the electric field of an electromagnetic(EM) field traveling in the x-direction through vacuum obeys the equation E~ y(x, t) = (325 N/C) cos[(4500 m−1 )x − (1.35 × 1012 rad/s)t + 0.6]ˆj (a) What are the wavelength and frequency of the EM wave? (b) Write an equation for the magnetic field vector of the EM field. (c) What is the average Poynting vector? I need all parts of this question. Thanks!

  • An Electromagnetic Wave A sinusoidal electromagnetic wave of frequency 43.0 MHz travels in free space in...

    An Electromagnetic Wave A sinusoidal electromagnetic wave of frequency 43.0 MHz travels in free space in the x-direction as in the figure. At some instant, a plane electromagnetic wave moving in the x direction has a maximum electric field of 725 N/C in the positive y direction. (a) Determine the wavelength and period of the wave. SOLUTION plane. Conceptualize Imagine the wave in the figure moving to the right along the x-axis, with the electric and magnetic fields oscillating in...

  • if the magnetic field of an electromagnetic wave is in the +x-direction and the electric field...

    if the magnetic field of an electromagnetic wave is in the +x-direction and the electric field of the wave is in the +y direction, the wave is traveling in what direction? Explain your answer.

  • An electromagnetic wave is propagating in the -x direction. At one instant, the electric field of...

    An electromagnetic wave is propagating in the -x direction. At one instant, the electric field of this EM wave is pointing in the -z direction with a magnitude of 4.5e+005 N/C. At this same instant, 7. ac what are the magnitude and direction of the magnetic field of this EM wave? A 4.50e+005 T, in the -z direction B 6.67e+002 T, in the ty direction C 6.67e+002 T, in the -y direction 1.50e-003 T, in the -y direction 1.50e-003 T,...

  • 1. The electric field of an electromagnetic wave traveling through vacuum is the following: 5.90x1 :...

    1. The electric field of an electromagnetic wave traveling through vacuum is the following: 5.90x1 : + a. Draw a qualitative sketch of this E function for t = 0. Add the B field as well to complete the EM wave. Be sure to label the axes. Don't worry about your drawing ability. b. What is the magnitude of the magnetic field B.? C. What is the wavelength of the EM wave? d. What is the frequency of the EM...

  • The electric field of an electromagnetic wave traveling in the vacuum of space is described by...

    The electric field of an electromagnetic wave traveling in the vacuum of space is described by E = (4.60 ✕ 10−3) sin(kx − ωt) V/m. (a) What is the maximum value of the associated magnetic field for this electromagnetic wave? ____T (b) What is the average energy density of the wave? ___J/m3

  • Consider an electromagnetic wave traveling through empty space described by the electric and magnetic fields given....

    Consider an electromagnetic wave traveling through empty space described by the electric and magnetic fields given. In which direction is this wave traveling? Find the magnitude (in terms of alpha) and the direction of the constant vector G. What is the wavelength and frequency of this wave? Consider an electromagnetic wave travelling through empty space described by the electric and magnetic fields where ? and L are positive constants and G is a constant vector. (a) [1 pt] In which...

  • A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has...

    A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex = Ey = 0 and Ez = (4.2 V/m) cos[(? × 1015 s-1)(t - x/c)].(a) What is the amplitude of the magnetic field component? (b) Parallel to which axis does the magnetic field oscillate? (c) When the electric field component is in the positive direction of the z axis at a certain point P, what is the direction of the magnetic field...

  • Question 2: For an electromagnetic plane wave, the electric field is given by: Ē = E,...

    Question 2: For an electromagnetic plane wave, the electric field is given by:$$ \vec{E}=E_{0} \cos (k z+\omega t) \hat{x}+0 \hat{y}+0 \hat{z} $$a) Determine the direction of propagation of the electromagnetic wave.b) Find the magnitude and direction of the magnetic field for the given electromagnetic wave \(\vec{B}\).c) Calculate the Poynting vector associated with this electromagnetic wave. What direction does this vector point? Does this makes sense?d) If the amplitude of the magnetic field was measured to be \(2.5 * 10^{-7} \mathrm{~T}\),...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT