Question

STRUCTURAL ANALYSIS 1. Figure below are the cross section of the beam (aluminium) a) Find the moment of inertia of cross section I beam below. (10 point) 51mm 44 mm 3.5mm 3 mm 1.5 mm 35 mm 44 mm 9 mm 1.5 mm 3mm P/2 P/2 b) 0.15m 0.17 m 0.53m By Figure above are the beam with cross sectional in question [a). Find the maximum load (P that can be sustained by the beam. Given the ultimate tensile is 150 MPa.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
STRUCTURAL ANALYSIS 1. Figure below are the cross section of the beam (aluminium) a) Find the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A cross section of a RC beam is described in a below figure. Three No....

    1. A cross section of a RC beam is described in a below figure. Three No. 29 reinforcing bars are located at the bottom of the section. The area of a #29 reinforcing bar is 645 mm2 while the yield strength of the steel bar is 420 MPa. The tensile strength of concrete is 2.7 MPa, and the compressive strength of concrete is 21 MPa. In addition, n= E/Eis selected as 8. (1) Compute the maximum compressive and tensile stresses...

  • 1. A beam has a max moment of 45 kN-m. The cross section of the beam is shown in the figure below...

    1. A beam has a max moment of 45 kN-m. The cross section of the beam is shown in the figure below. a. State the distance of the centroid from the 2 axis. b. Calculate the area moment of inertia about the centroid. c. Calculate the maximum stress in the beam 300 mm 20 mm 185 mm 20 mm 35 mm 1. A beam has a max moment of 45 kN-m. The cross section of the beam is shown in...

  • A beam with cross-section as shown in Figure 2(a) is made of an elasto-plastic material. The...

    A beam with cross-section as shown in Figure 2(a) is made of an elasto-plastic material. The stressstrain relationship of the material is as shown in Figure 2(b): (a) A bending moment is applied to this section and increased until the entire top flange yielded. Calculate the magnitude of the moment at this stage of loading. (b) Determine the yield moment of the beam (c) Determine the ultimate moment capacity of the beam (d) Determine the shape factor of the beam...

  • The wood beam section is subjected to a moment about the horizontal axis: M-25 kN m. The beam mat...

    The wood beam section is subjected to a moment about the horizontal axis: M-25 kN m. The beam material is a select structural grade white spruce with a compression yield strength of Ơyielde-36 MPa. 25 mm 150 mm 25 mm 25 (e) Determine the moment of inertia for the cross-sectional area of the beam (show work, 10pts). Answer (include units) um stress developed in the beam due to the moment (show work, 10pts) Equation(s) used Answer (include units b) Determine...

  • The simply-supported beam having I-beam cross-section as shown in figure is to carry a uniformly distributed...

    The simply-supported beam having I-beam cross-section as shown in figure is to carry a uniformly distributed load over its entire 1.2m length. Specify the maximum allowable load if the beam is made from malleable iron, ASTM A220, class 80002. The allowable tensile stress is 164 MPa and allowable compressive stress is 412 MPa. The centroid of the section is located at 35 mm from the bottom and moment of inertia are Ix = 2.66 x 10 mm". (a) Draw loading...

  • Q5 Consider an extruded aluminium machine part that has the cross-section shown in the accompanying figure....

    Q5 Consider an extruded aluminium machine part that has the cross-section shown in the accompanying figure. Determine the maximum moment M that can be applied to the member if the allowable bending stresses in tension and compression are 200 MPa and 100 MPa respectively 100 mm 25 mm NA 50 mm 25 mm 50 mm 25 mm

  • Task 1: (50 Marks) Cross section of a reinforced concrete beam is shown in Figure 1....

    Task 1: (50 Marks) Cross section of a reinforced concrete beam is shown in Figure 1. The following shear forces have been calculated due to Dead Load and Live Load at the support: VDL = 150 kN, ViL = 200 kN. Design the shear reinforcement for the ultimate shear force. Use No. 10 bars for shear reinforcement Assume "fe, = 28 MPa, fyt-420 MPa, b = 300 mm, d = 750 mm, h = 800 mm Figure 1. Beam cross-section

  • Q211 A steel beam has Z-bar cross section as shown in below. Here O is the...

    Q211 A steel beam has Z-bar cross section as shown in below. Here O is the centroid of the cross section Moment of inertia and product of inertia of the cross section are given by I, = 24.3960(10° ) mm. l, = 67.41 10(10° ) mm. 1,--30.1840(10° ) mm. The internal force developed in the cross section is M 12 kN-m as shown. Determine the location and magnitude of the maximum tensile stress and maximum compressive stress in the cross...

  • 2. Given a simply supported beam shown in figure below with the cross section at maximum...

    2. Given a simply supported beam shown in figure below with the cross section at maximum moment. The beam supports a uniform service dead load of WDL =30 kN/m (excluding own weight of beam), Pll = 270 kN. Use fc' = 30 MPa; fy = 400 MPa. Calculate design strength OMn for the cross section shown in the figure. Check the strains in the steel esi. LL , 75-40-100 -775 90 90 WOL 710 650 5030 -15000 mm

  • Determine the moment inertia along the horizontal neutral axis for the cross section of the beam...

    Determine the moment inertia along the horizontal neutral axis for the cross section of the beam (in 106 mm4) and the maximum normal stress due to bending on a transverse section at C (in MPa) 3 KN 3 KN 1.8 kN/m 80 mm 11 A | В 300 mm D -1.5 m -1.5 m -1.5 m

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT