Question

A proton, that is accelerated from rest through a potential of 13.0 kV enters the velocity...

A proton, that is accelerated from rest through a potential of 13.0 kV enters the velocity filter, consisting of a parallel-plate capacitor and a magnetic field, shown below.

A proton, that is accelerated from rest through a

The E-field between the parallel capacitor plates is 3.9·105 N/C. What B-field is required so that the protons are not deflected? (Ignore relativistic effects for high velocities.)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A proton, that is accelerated from rest through a potential of 13.0 kV enters the velocity...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A proton accelerated through a potential of 12.0 kV enters a device which has both an...

    A proton accelerated through a potential of 12.0 kV enters a device which has both an electric and a magnetic field, that are perpendicular to each other as shown in the figure. This device is known as a "velocity filter", because only protons with a given velocity are not deflected and continue their trajectory along the y-axis through the aperture shown in the figure. Indicate the directions of both the electric force and the magnetic force. +x -x +y -y...

  • A proton is accelerated from rest through a potential differences of 1.0 kV. It enters a...

    A proton is accelerated from rest through a potential differences of 1.0 kV. It enters a uniform magnetic field of 4.5 mT that is initially perpendicular to its velocity. (a) Find the radius of the proton's circular path (b). Calculate the period of revolution of the proton.

  • In the figure, an electron accelerated from rest through potential difference V_1 = 1.02 kV enters...

    In the figure, an electron accelerated from rest through potential difference V_1 = 1.02 kV enters the gap between two parallel plates having separation d = 26.5 mm and potential difference V_2= 171 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?

  • In the figure, an electron accelerated from rest through potential difference V_1 = 1.3 kV enters...

    In the figure, an electron accelerated from rest through potential difference V_1 = 1.3 kV enters the gap between two parallel plates having separation 20.0 mm and potential difference V_2 = 200 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? (Express...

  • WITCUTELL. In the figure, an electron accelerated from rest through potential difference V1=1.16 kV enters the...

    WITCUTELL. In the figure, an electron accelerated from rest through potential difference V1=1.16 kV enters the gap between two parallel plates having separation d = 27.2 mm and potential difference V = 51.3 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?...

  • Question 2 In the figure, an electron accelerated from rest through potential difference Vi-1.00 kv enters...

    Question 2 In the figure, an electron accelerated from rest through potential difference Vi-1.00 kv enters the gap between two parallel plates having separation d 21.2 mm and potential difference V2 158 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? L....

  • A proton (m= 1.67e-27 kg) is accelerated from rest through a potential difference of 11.5 kV...

    A proton (m= 1.67e-27 kg) is accelerated from rest through a potential difference of 11.5 kV before entering a velocity selector. If the B- field of the velocity selector is perpendicular to the velocity and the electric field (E) has a magnitude of 3.5e6 N/C, what is the required magnitude of the magnetic field (B) if the proton is undeflected?

  • A proton is accelerated through a 3.11 kV potential difference and directed between parallel plates separated...

    A proton is accelerated through a 3.11 kV potential difference and directed between parallel plates separated 12.3 mm as shown below. The EMF of the battery is 10.0 V. What is the magnitude and direction of the uniform magnetic field between the plates that allows the proton to travel undeflected?

  • Chapter 28, Problem 009 In the figure, an electron accelerated from rest through potential difference V,...

    Chapter 28, Problem 009 In the figure, an electron accelerated from rest through potential difference V, -0.889 KV enters the gap between two parallel plates having separation d - 16.1 mm and potential difference Vy- 59.7 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line...

  • Chapter 28, Problem 009 XIncorrect. In the figure, an electron accelerated from rest through potential difference...

    Chapter 28, Problem 009 XIncorrect. In the figure, an electron accelerated from rest through potential difference Vi-0.855 kV enters the gap between two parallel plates having separation d 26.8 mm and potential difference V2= 79.8 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT