Question

A simple Atwoods machine uses two masses, m1 and m2. Starting from rest, the speed of the two masses is 10.0 m/s at the end

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Final kinetic energy, Kf = 1/2 * (m1 + m2) * v2

Final potential energy, Pf ( assuming m1 moves up and m2 moves down) = m1*g*h - m2*g*h

We know that total mechanical energy is conserved

so,

Kf = 90 = - Pf

1/2 * (m1 + m2) * v2 = 90

m1 + m2 = 1.8 ------------- (1)

m2*g*h - m1*g*h = 90

m2 - m1 = 90 / 9.8*40

m2 - m1 = 0.2296 Kg --------- (2)

solving (1) and (2), we have

m1 = 1.0148 Kg

m2 = 0.7852 Kg

Add a comment
Know the answer?
Add Answer to:
A simple Atwood's machine uses two masses, m1 and m2. Starting from rest, the speed of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Conservative Forces and Potential Energy? A simple Atwood's machine uses two masses, m1 and m2. Starting...

    Conservative Forces and Potential Energy? A simple Atwood's machine uses two masses, m1 and m2. Starting from rest, the speed of the two masses is 6 m/s at the end of 5 s. At that instant, the kinetic energy of the system is 67 J and each mass has moved a distance of 15 m. Determine the values of m1 and m2

  • An Atwood's machine consists of masses m1 and m2, and a pulley of negligible mass and...

    An Atwood's machine consists of masses m1 and m2, and a pulley of negligible mass and friction. Starting from rest, the speed of the two masses is 4.10 m/s at the end of 3.07 s. At that time, the kinetic energy of the system is 90.0 J and each mass has moved a distance of 6.30 m. Determine the lighter mass. Determine the heavier mass.

  • Atwood's Machine An Atwood's machine consists of two masses, m1 and m2. connected by a string that passes over a pulley.

    Atwood's Machine An Atwood's machine consists of two masses, m1 and m2. connected by a string that passes over a pulley. Part A If the pulley is a disk of radius R and mass M. find the acceleration of the masses.

  • 4. A simple Atwood machine consists of two masses m1 and m2 that are connected by...

    4. A simple Atwood machine consists of two masses m1 and m2 that are connected by a string wound over a pulley, as seen in the figure below. Assume m2 is larger than m1. Motion in the upward direction is positive. On a piece of paper, draw two free body diagrams; one for each of the masses, showing all forces acting on each mass. Then answer the following questions. Suppose that m2 starts from rest at a height of 7...

  • Two blocks m1 and m2 with masses 50 kg and 100 kg respectively are connected by...

    Two blocks m1 and m2 with masses 50 kg and 100 kg respectively are connected by a string over a pulley that is frictionless with negligible mass. The 50 kg block slides on a 37 degree incline that has a coefficient of kinetic friction of 0.25. This block is also attached to a wall at the base of the incline by an ideal spring that has a spring coefficient of 100 N/m. The system is released from rest with a...

  • As shown in the figure below, two masses m1 = 4.80 kg and m2 which has...

    As shown in the figure below, two masses m1 = 4.80 kg and m2 which has a mass 80.0% that of my, are attached to a cord of negligible mass which passes over a frictionless pulley also of negligible mass. If m1 and m2 start from rest, after they have each traveled a distance h = 1.10 m, use energy content to determine the following. m M (a) the speed (in m/s) v of the masses m/s (b) the magnitude...

  • 2. Atwood's Table with Two Hanging Masses You have table of width L, masses m1, m2,...

    2. Atwood's Table with Two Hanging Masses You have table of width L, masses m1, m2, and m3, two frictionless pulleys, and ideal string. Placing m2 on the table, you attach a bit of string to mass m1 the left pulley, to the left side of m2. Similarly, you hang mass m3 from the right side of m2 using the pulley on the right side of the table. The coefficient of friction of the table is mu. The acceleration of...

  • Objects with masses m1 = 8.0 kg and m2 = 5.00 kg are connected by a...

    Objects with masses m1 = 8.0 kg and m2 = 5.00 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.70 s, determine the coefficient of kinetic friction between m1 and the table.

  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2 ) attached...

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2 ) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an acceleration a = g*(m1+m2)/)m1−m2 Suppose that m and are measured as m1 = 100 +- 1 gram and m2 = 50 +- 1 gram. Derive a formula of uncertainty in the expected acceleration in...

  • Two blocks with different masses m1 and m2 and m1 is larger than m2. They are...

    Two blocks with different masses m1 and m2 and m1 is larger than m2. They are attached to either end of a light rope that passes over a light, frictionless pulley suspended from the ceiling. The mass are released from rest, and the more massive one starts to descend. After this block has descended 1.6 m, its speed is 2.2 ms-1. If the total mass is 4.1 kg, what is the mass of the heavier block m1 (unit is kg)?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT