Question

2. Atwood's Table with Two Hanging Masses You have table of width L, masses m1, m2,...

2. Atwood's Table with Two Hanging Masses

You have table of width L, masses m1, m2, and m3, two frictionless pulleys, and ideal string. Placing m2 on the table, you attach a bit of string to mass m1 the left pulley, to the left side of m2. Similarly, you hang mass m3 from the right side of m2 using the pulley on the right side of the table. The coefficient of friction of the table is mu. The acceleration of gravity is g. Derived expressions are in some or all of the m1, m2, m3, mu, L, and g.

1) Draw a physical diagram of the system, and free body diagrams of each block, showing only relevant forces, fully labeled.

2) Write the Newton's second law equation for each block. Three equations. Identify the three unknowns.

3) Derive, using forces and Newton's second law, an expression for the acceleration of the masses.

4) Derive, using the energy method, an expression for the acceleration of the masses.

5) Derive an expression for the value of mu that makes the value of the acceleration zero.

6) Derive an expression for the time it takes mass m2 to move the width of the table starting from rest.

7) Derive expressions for the tensions T1 and T2 in the left and right strings, respectively.

8) Calculate the ratio T1/T2.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

table of width L,

masses m1, m2,

and m3,

Add a comment
Know the answer?
Add Answer to:
2. Atwood's Table with Two Hanging Masses You have table of width L, masses m1, m2,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Atwood's Machine An Atwood's machine consists of two masses, m1 and m2. connected by a string that passes over a pulley.

    Atwood's Machine An Atwood's machine consists of two masses, m1 and m2. connected by a string that passes over a pulley. Part A If the pulley is a disk of radius R and mass M. find the acceleration of the masses.

  • Atwood's machine consists of blocks of masses mi -8.8 kg and m2 - 17.5 kg attached...

    Atwood's machine consists of blocks of masses mi -8.8 kg and m2 - 17.5 kg attached by a cord running over a pulley as in the figure below. The pulley is id cylinder with mass M-7.30 kg and radiusr 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? Score: 1 out of Comment: (b) What is the acceleration...

  • An Atwood's machine consists of blocks of masses m,-11.0kg and m2-18.0kg attached by a cord running...

    An Atwood's machine consists of blocks of masses m,-11.0kg and m2-18.0kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M 8.50 kg and radius 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? This answer has not been graded yet (b) What is the acceleration...

  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2 ) attached...

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2 ) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an acceleration a = g*(m1+m2)/)m1−m2 Suppose that m and are measured as m1 = 100 +- 1 gram and m2 = 50 +- 1 gram. Derive a formula of uncertainty in the expected acceleration in...

  • Two blocks are connected to a string, and the string is hung over a pulley connected...

    Two blocks are connected to a string, and the string is hung over a pulley connected to the ceiling, as shown in the figure below. Two blocks, labeled m1 and m2, are connected to a string which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. A block labeled m1 hangs suspended off the surface on the left side of the pulley. A block m2 is on the right side of...

  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an accelerationSuppose that m1 and m2 are measured as m1=100±1 gram and m2=50±1 gram. Derive a formula of the uncertainty in the expected acceleration in terms of the masses and their uncertainties, and then calculate δα for...

  • Two blocks of masses m1 and m2 hang at the ends of a string that passes...

    Two blocks of masses m1 and m2 hang at the ends of a string that passes over the very light pulley with low friction bearings. Determine an expression for the acceleration of each block for the case when the blocks have the same mass m, but one is positioned lower than the other. Express your answer in terms of m ( m = m1 = m2) and gravitational constant g.

  • 6) Draw free-body diagrams of both hanging masses? masses. What force is acting on both Force...

    6) Draw free-body diagrams of both hanging masses? masses. What force is acting on both Force sensor Hanging massi 7) Use Newton's Second Law to calculate the theoretical acceleration a of both masses Show your work. Calculated or theoretical acceleration ar 8) Measure the acceleration a of the cart by using the velocity-time (measured or experimental acceleration), The slope of this graph is the experimental or measured acceleration a. Measured or experimental acceleration 9) Calculate the % difference. a.-a, x100...

  • Atwood's machine consists of two blocks connected by a string suspended over a pulley as illustrated...

    Atwood's machine consists of two blocks connected by a string suspended over a pulley as illustrated in Fig. 2. Typ ically the two blocks are released from rest. Newton's laws can be used to predict their subsequent acceleration, which can also be determined by measuring the speeds of the blocks as time passes. The aim of this experiment is to verify the accelerations as predicted by Newton's second law R1 Figure 2: Atwood's machine. Block 1 is on the left,...

  • Conservative Forces and Potential Energy? A simple Atwood's machine uses two masses, m1 and m2. Starting...

    Conservative Forces and Potential Energy? A simple Atwood's machine uses two masses, m1 and m2. Starting from rest, the speed of the two masses is 6 m/s at the end of 5 s. At that instant, the kinetic energy of the system is 67 J and each mass has moved a distance of 15 m. Determine the values of m1 and m2

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT