Question

2. Consider the closed-loop transfer function: T(s) a) Obtain the family of impulse responses for K-10, 200 and 500 b) Obtain the family of step responses for K-10, 200 and 500. c Obtain the family of ramp responses for K-10, 200 and 500. b) Co-plot each of the family of responses Explain using the DC-Gain for each of the K and the test signal. Is there any difference between s2+5s+K Ks in terms of the natural and forced response?

Please provide the used MATLAB code.

1 0
Add a comment Improve this question Transcribed image text
Answer #1

fig:1 fig:2 impulse response impulse response impulse response 500 400 150 200 5D -200 300 -400 2.5 05 15 2.5 time in secondsFIG:1 FIG:2 FTG:3 STEP RESPONSE STEP RESPONSE STEP RESPONSE 20 10 .5 15 0.5 25 Tine i seconde econde) Time in scconds (ccondsFIG:1 FIG:2 FIG: 3 amp reepDne rsmp esponse 30- 10 time in seconds isecard time in seconds seconca clc; clear all; Declare th

Add a comment
Know the answer?
Add Answer to:
Please provide the used MATLAB code. 2. Consider the closed-loop transfer function: T(s) a) Obtain the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • Q2 (a) Consider the control system shown in Figure Q1 (a). Obtain the closed-loop transfer function...

    Q2 (a) Consider the control system shown in Figure Q1 (a). Obtain the closed-loop transfer function of this system and by using MATLAB obtain the unit step response of this closed loop system - R(S) c(s) 36+1) (s + 1) Figure Q2 (a) (b) A sampler and a zero-order hold element were inserted into the system in Figure Q1(a) as shown in Figure Q1(b). Obtain the closed-loop pulse transfer function of this system and by using MATLAB or otherwise, obtain...

  • Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+2...

    Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+200) G(s) = Do the following using Matlab: a) Sketch the root locus. b) Find the range of gain, K that makes the system stable c) Find the value of K that yields a damping ratio of 0.707 for the system's closed-loop dominant poles. d) Obtain Ts, Tp, %OS for the closed loop system in part c). e) Find the value of K that yields...

  • Please solve it with step by step MATLAB code, thank you! Suppose that a system is shown in Figure 2. Based on for loop, write a piece of MATLAB code to calculate the closed loop poles for 03K35 and...

    Please solve it with step by step MATLAB code, thank you! Suppose that a system is shown in Figure 2. Based on for loop, write a piece of MATLAB code to calculate the closed loop poles for 03K35 and plot the outputs where the poles are represented by "W" letter. Find the interval of K parameter for stability using Routh-Hurwitz method. Calculate the poles of the closed loop transfer function where K attains the minimum value such that the system...

  • (a) (i) Show that the sensitivity of the closed-loop transfer function T(s) to variations in the...

    (a) (i) Show that the sensitivity of the closed-loop transfer function T(s) to variations in the plant transfer function G(s), in figure 4, is given by 1 SI - SG = 1+G(s)H(s) (ii) If G(s) = and H(s) = 10 (figure 4) and the dc gain of the plant transfer function G(s) changes by 1%, what is the corresponding change in the dc gain of the closed-loop system? [40%] (b) A feedback system is to control output angular position 0....

  • PLEASE USE MATLAB TO ANSWER ALL OF THE PARTS. PROVIDE MATLAB CODE FOR EACH OF THE...

    PLEASE USE MATLAB TO ANSWER ALL OF THE PARTS. PROVIDE MATLAB CODE FOR EACH OF THE PART. PUT THE ANSWER IN A BOX. Consider the unity feedback system depicted in Figure 1 G(s) R(s) 50K s(s + a) Figure 1 1. Determine the system's closed loop transfer function. 2. Plot the system's step response for K=10 and: • a= 2 • a=5 • a= 10 3. What happens to the system's response as a increases? Justify your answer. 4. In...

  • 2. The transfer function of a CT LTI system is given by H(s) (s2 +6s +10) (s2 -4s +8) a) Draw the...

    2. The transfer function of a CT LTI system is given by H(s) (s2 +6s +10) (s2 -4s +8) a) Draw the pole-zero plot of the transfer function. b) Show all possible ROC's associated with this transfer function. c) Obtain the impulse response h(t) associated with each ROC of the transfer function. d) Which one (if any) of the impulse responses of part c) is stable? 2. The transfer function of a CT LTI system is given by H(s) (s2...

  • Closed-loop system response and characteristics, Proportional gain 10 < paste transfer function T...

    Closed-loop system response and characteristics, Proportional gain 10 < paste transfer function Ts as output from Matlab here> clear all: close all: ls J = 0.022R = 0.11;K = 0.02;R 1.5;L= 0.6; Closed loop Transfer function T(s) Cs-10; RRA pole (Tg) 22T zero (Tg) figure ; figure ; teS) characteristics natural frequency damping ratio Dr-abs(real (RpT (2)) ) / ettling time peak time ER忌 overshoot 032=100 rise time Step response of open-loop system: Pole-zero map: easte,pole-zero plot here> Pole-Zero Map...

  • only b and c please 1 Consider the system whose transfer function is given by: G(S)...

    only b and c please 1 Consider the system whose transfer function is given by: G(S) == (2s +1)(s+3) unction is given by: G(s) - (a) Use the root-locus design methodology to design a lead compensator that will provide a closed-loop damping 5 =0.4 and a natural frequency on =9 rad/sec. The general transfer function for lead compensation is given by D(5)=K (977), p>z, 2=2 (b) Use MATLAB to plot the root locus of the feed-forward transfer function, D(s)*G(s), and...

  • Consider the closed loop system defined by the following block diagram. a) Compute the transfer function...

    Consider the closed loop system defined by the following block diagram. a) Compute the transfer function E(s)/R(s). b) Determine the steady state error for a unit-step 1. Controller ant Itly Ro- +- HI- 4단Toy , c) d) e) reference input signal. Determine the steady state error response for a unit-ramp reference input signal. Determine the locations of the closed loop poles of the system. Select system parameters kp and ki in terms of k so that damping coefficient V2/2 and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT