Question

A penny is placed at the outer edge of a disk (radius = 0.138 m) that...

A penny is placed at the outer edge of a disk (radius = 0.138 m) that rotates about an axis perpendicular to the plane of the disk at its center. The period of the rotation is 1.71 s. Find the minimum coefficient of friction necessary to allow the penny to rotate along with the disk.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
A penny is placed at the outer edge of a disk (radius = 0.138 m) that...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A penny is placed at the outer edge of a disk (radius = 0.122 m) that...

    A penny is placed at the outer edge of a disk (radius = 0.122 m) that rotates about an axis perpendicular to the plane of the disk at its center. The period of the rotation is 1.54 s. Find the minimum coefficient of friction necessary to allow the penny to rotate along the disk. (Answer in units)

  • A penny is placed at the outer edge of a disk (radius = 0.147 m) that rotates about an axis perpendicular to the plane o...

    A penny is placed at the outer edge of a disk (radius = 0.147 m) that rotates about an axis perpendicular to the plane of the disk at its center. The period of the rotation is 1.70 s. Find the minimum coefficient of friction necessary to allow the penny to rotate along with the disk.

  • A disk with a rotational inertia of 5.0 kg · m2 and a radius of 0.25...

    A disk with a rotational inertia of 5.0 kg · m2 and a radius of 0.25 m rotates on a frictionless fixed axis perpendicular to the disk and through its center. A force of 8.0 N is applied along the rotation axis. The angular acceleration of the disk is? The answer is 0, but how?

  • A uniform solid disk of mass m = 3.06 kg and radius r = 0.200 m...

    A uniform solid disk of mass m = 3.06 kg and radius r = 0.200 m rotates about a fixed axis perpendicular to its face with angular frequency 6.09 rad/s. (a) Calculate the magnitude of the angular momentum of the disk when the axis of rotation passes through its center of mass. kg · m2/s (b) What is the magnitude of the angular momentum when the axis of rotation passes through a point midway between the center and the rim?...

  • A uniform solid disk of mass m = 3.08 kg and radius r = 0.200 m...

    A uniform solid disk of mass m = 3.08 kg and radius r = 0.200 m rotates about a fixed axis perpendicular to its face with angular frequency 6.09 rad/s. (a) Calculate the magnitude of the angular momentum of the disk when the axis of rotation passes through its center of mass. kg · m2/s (b) What is the magnitude of the angular momentum when the axis of rotation passes through a point midway between the center and the rim?...

  • 1 out of A wheel has an inner radius Ry = 0.5 m and an outer...

    1 out of A wheel has an inner radius Ry = 0.5 m and an outer radius R2 = 1 m. The wheel is able to rotate around an axis that passes through its center and perpendicular to its plane. Two forces F = 20 N and F2 = 8 N act on the wheel as shown in the figure below. The magnitude of the net torque (in N.m) acting on the wheel about the rotation axis is: →F2 a)...

  • Imagine a spinning disk of uniform density, with mass M and radius R. Except where noted,...

    Imagine a spinning disk of uniform density, with mass M and radius R. Except where noted, it is rotating about an axis through its center and perpendicular to its plane. What is its moment of inertia if the axis of rotation is moved to a line 2R from the center of the disk? (There’s no rotation of the axis, it remains parallel to its original position). Could someone explain what this question is asking in a diagram?

  • a). Find the electric field along the axis of a thin disk placed in the xy...

    a). Find the electric field along the axis of a thin disk placed in the xy plane, at a distance z from the disk center (the field at distance z from center). It has a uniform charge of density σ and an outer radius R. b). Now consider a similar disk with annular shape, it is the disk in part (a) but with a concentric hole of radius R/2. Calculate the electric field along the z axis. c). Find electric...

  • A uniform disk of radius 0.455 m0.455 m and unknown mass is constrained to rotate about...

    A uniform disk of radius 0.455 m0.455 m and unknown mass is constrained to rotate about a perpendicular axis through its center. A ring with the same mass as the disk is attached around the disk's rim. A tangential force of 0.237 N0.237 N applied at the rim causes an angular acceleration of 0.129 rad/s2.0.129 rad/s2. Find the mass of the disk.Why is this wrong? A uniform disk of radius 0.455 m and unknown mass is constrained to rotate about...

  • 1a. A cockroach of mass m lies on the rim of a uniform disk of mass...

    1a. A cockroach of mass m lies on the rim of a uniform disk of mass 9.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.456 rad/s. Then the cockroach walks halfway to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? (b) What is the ratio K/K0 of the new kinetic energy of the system to its...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT