Question
See attached photo
Problem 2 Attempt 5 A block of mass m1 3.00 slugs, on a smooth inclined plane of angle 30.0 degrees, is connected by a cord over a small frictionless pulley to a second block of mass m2 20.0 slugs, hanging vertically at the top of the incline. What is the acceleration (in feet/second 2) of the masses? Enter your response here Submit Reset
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Let the tension in string be T and acceleration be a.

Using force equations, T - m1g sin 30 degree = m1a

m2g - T = m2a

adding both, m2g - m1g sin 30 degree = a*(m1+m2)

32.2*(20 - 3*0.5) = a*(3+20)

a = 32.2*18.5/23

= 25.9 ft/s^2 answer

  

Add a comment
Know the answer?
Add Answer to:
See attached photo Problem 2 Attempt 5 A block of mass m1 3.00 slugs, on a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is...

    A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is connected by a cord over a massless, frictionless pulley to a second block of mass m2=2.3 kg hanging vertically (shown above). What are (a) the magnitude of the acceleration of each block, (b) the direction of the acceleration of the hanging block, and (c) the tension in the cord?

  • A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ = 32.3° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?

  • Chapter 5 Questions 13 A block of mass m1 = 3.14 kg on a frictionless plane...

    Chapter 5 Questions 13 A block of mass m1 = 3.14 kg on a frictionless plane inclined at angle 0 = 32.7° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.56 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord? o (a) Number Units (b) Number Units

  • A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ = 31.8° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.74 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord? Answered (a) which is 1.65 but cant get (b). Its not 27.6.

  • A block with mass one 10.0 kg is placed on an inclined plane with slope angle...

    A block with mass one 10.0 kg is placed on an inclined plane with slope angle 20.0 degrees and is connected to a second hanging block that has mass two 14.0 kg by a cord passing over a small, frictionless pulley. The coefficient of kinetic friction between the inclined plane and the block is 0.35. What is the ACCELERATION of the block up the incline?

  • 2. (1 point) A ball of mass m1-2kg and a block of mass m2-10kg are attached...

    2. (1 point) A ball of mass m1-2kg and a block of mass m2-10kg are attached by a lightweight cord that passes over a frictionless pulley of negligible mass, as in figure. The block lies on a frictionless incline of angle 15°. Find the magnitude of the acceleration of the two objects and the tension in the cord

  • 4) A block of mass m1 = 3.7kg on a frictionless plane, inclined at an angle...

    4) A block of mass m1 = 3.7kg on a frictionless plane, inclined at an angle of 0 = 30°, is connected by a cord over a massless, frictionless pulley to a second of mass m2 = 4.3 kg. Refer to the accompanying figure below. a) What is the acceleration of the hanging block? b) What is the tension in the cord? N 2 2 M2 J Mig 1 30° a) T-mg = ma Tsino-m, g=m, a x m, atmig...

  • Two Masses, a Pulley, and an Inclined Plane Block 1, of mass m1 = 0.550kg ,...

    Two Masses, a Pulley, and an Inclined Plane Block 1, of mass m1 = 0.550kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of ? = 30.0? and a coefficient of kinetic friction between block 2 and the plane of ? = 0.400, an acceleration of magnitude a = 0.500m/s2 is observed for block 2. -Find the mass of block 2, m2.?

  • A block of mass m1 = 3.7 Kg on a frictionless plane inclined at an angle...

    A block of mass m1 = 3.7 Kg on a frictionless plane inclined at an angle θ = 30° is connected by a cord over a massless frictionless pulley to a second block of mass m2 = 2.3 Kg. ​a) What is the magnitude of the acceleration of each block?    b) What is the Tension of the cord? c) What is the Normal force?

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT