Question

3.5 An engine working on ideal Otto cycle, the ratio of temperature at the beginning of compression is 300 K. If the ideal ai

0 0
Add a comment Improve this question Transcribed image text
Answer #1

SoiA 4 2 I T 300k IT EO5 Y-1 = 2 Y -L 0.4 2 5-65P2 T2 1-1 T 11 1150 K T8 Y-1 NA P3 P4 T3 T4 V3 N4 = VI T4 6.41 (565) 55 K Au

Add a comment
Know the answer?
Add Answer to:
3.5 An engine working on ideal Otto cycle, the ratio of temperature at the beginning of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A4.6 L spark ignition engine operates on the ideal Otto cycle with a compression ratio of 10. At the beginning of the compression process the air is at 107 kPa and 21 C. The maximum cycle temp...

    4. A4.6 L spark ignition engine operates on the ideal Otto cycle with a compression ratio of 10. At the beginning of the compression process the air is at 107 kPa and 21 C. The maximum cycle temperature is 1116°C. Accounting for variable specific heats, determine: (a) the heat addition per cycle in kJ. Ans: 3.368 kJ (b) the net work per cycle in kJ. Ans: 1.907 kJ (c) the mean effective pressure in kPa. Ans: 460.6 kPa (d) the...

  • A gasoline engine operates on the air standard Otto cycle. The air intake to the engine...

    A gasoline engine operates on the air standard Otto cycle. The air intake to the engine is at 300K and 95kPa (State 1). The air is compressed in the engine to an unknown pressure. Heat is then added during combustion at an amount of 1100 kJ/kg. At the end of the heat addition process, the temperature reaches 2200K. Compute the following: (a) the temperature at the end of the compression process, (b) the volumetric compression ratio of this engine, (c)...

  • An ideal Otto cycle with air as the working fluid has a compression ratio of 7....

    An ideal Otto cycle with air as the working fluid has a compression ratio of 7. At the beginning of the compression process, air is at 90 kPa and 27°C, and volume of the cylinder v1 = 0.004 m3. The maximum cycle temperature is 1127°C. Taking into account constant specific heats at room temperature, determine, a) the heat rejection (2) b) the net work output (2) c) the thermal efficiency, and (2) d) the mean effective pressure for the cycle...

  • Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of...

    Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27 and 720 kJ/kg of heat is transferred to air during the constant volume heat addition process. Take into account the variation of specific heats with temperature. The gas constant of air is R=0.287 kJ/kg.K. Determine the network output (You must provide an answer before moving on to the next part.) The net work output...

  • (12 points) An ideal Otto cycle operates with a compression ratio of 10. At the beginning...

    (12 points) An ideal Otto cycle operates with a compression ratio of 10. At the beginning of the compression process, the air is at 101 kPa and 27°C. During the constant volume heat addition process, 790 kJ/kg of heat is transferred to the air. Accounting for variable specific heats with temperature, determine: the maximum temperature during the cycle 1266.862 °C the maximum pressure during the cycle 6239.424 kPa the specific net work output 475.495481 kJ/kg the mean effective pressure (MEP)...

  • An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression...

    An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression process, air is at 100 kPa and 17°C, and 900 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle .

  • Q3. An ideal Otto cycle has a compression ratio of 8. At the beginning of the...

    Q3. An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 278C, and 750 kJ/kg of heat is transferred to air during the constant- volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat- addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for...

  • An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression...

    An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression process, air is at 95 kPa and 27-degree C, and 750 kJ/kg of heat is to air during the constant-volume heat-addition process. Considering the variation of specific heats with temperature (Table A-17), determine (a) the pressure and temperature at the end of the heat addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the...

  • Consider a cold air standard Otto cycle for a 4-stroke engine with four cylinders. The compression...

    Consider a cold air standard Otto cycle for a 4-stroke engine with four cylinders. The compression ratio is 9. At the beginning of the compression the air in each cylinder is at 95 kPa, 5 C and occupies a volume of 555 cm^3. During the heat addition process the pressure triples. Determine the efficiency of the cycle and the net power output (per kg of air). If the engine is running at 2800 RPM determine the power output in horsepower....

  • 12. The Otto cycle is the cycle run by most car engines. An idealized Otto cycle...

    12. The Otto cycle is the cycle run by most car engines. An idealized Otto cycle is depicte in this graph: lgution Power stroke oH 2 IsochoricAdiabatic expansion Adiabatic compressionValve exhaust ecl Compression stroke Exhaust stroke 1 Isochoric Intake stroke The efficiency of this idcal Otto cycle can be expressed as Ts -Ti eo = 1-14-71 where these are the temperatures of the corresponding points on the graph. a) Find the efficiency of an ideal Otto cycle with temperatures T1-25...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT