Question

Learning Goal: The beam shown (Figure 1) is supported by a pin at A and a cable at B. Two loads P = 18 kN are applied straighReview Part B - Normal stress due to bending Learning Goal: To calculate the normal and shear stresses at a point in a beam s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

B 30 A 0.8m 0.8m 0.8m 18 kW 18 kn. FEMA=02. I sin 30 (3x 0.8) – 18 (0.8) - 18 (2x0.8) = 0 T = 36 kN. SECTAN COT T = 36 kN. 30

Add a comment
Know the answer?
Add Answer to:
Learning Goal: The beam shown (Figure 1) is supported by a pin at A and a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The beam shown (Figure 1) is supported by a pin at A and a cable at...

    The beam shown (Figure 1) is supported by a pin at A and a cable at B. Two loads P = 13 kN are applied straight down from the centerline of the bottom face. Determine the state of stress at the point shown (Figure 2) in a section 2 m from the wall. The dimensions are w = 5.2 cm , h = 10.5 cm , L = 0.8 m , a = 1.5 cm , and b = 4...

  • The beam shown (Figure 1) is supported by a pin at A and a cable at...

    The beam shown (Figure 1) is supported by a pin at A and a cable at B. Two loads P = 13 kN are applied straight down from the centerline of the bottom face. Determine the state of stress at the point shown (Figure 2) in a section 2 m from the wall. The dimensions are w = 5.2 cm , h = 10.5 cm , L = 0.8 m , a = 1.5 cm , and b = 4...

  • The beam shown (Figure 1) is supported by a pin at A and a cable at...

    The beam shown (Figure 1) is supported by a pin at A and a cable at B. Two loads P = 13 kN are applied straight down from the centerline of the bottom face. Determine the state of stress at the point shown (Figure 2) in a section 2 m from the wall. The dimensions are w = 5.2 cm , h = 10.5 cm , L = 0.8 m , a = 1.5 cm , and b = 4...

  • Learning Goal: To calculate the normal and shear stresses at a point on the cross section...

    Learning Goal: To calculate the normal and shear stresses at a point on the cross section of a column. The state of stress at a point is a description of the normal and shear stresses at that point. The normal stresses are generally due to both internal normal force and internal bending moment. The net result can be obtained using the principle of superposition as long as the deflections remain small and the response is elastic. Figure < 1 of...

  • will upvote thank you! please try and be as detailed as possible to further my understanding...

    will upvote thank you! please try and be as detailed as possible to further my understanding Learning Goal: To calculate the normal and shear stresses at a point on the cross section of a column. The state of stress at a point is a description of the normal and shear stresses at that point. The normal stresses are generally due to both internal normal force and internal bending moment. The net result can be obtained using the principle of superposition...

  • Learning Goal: To identify the directions of the shear and normal stresses in a simply supported...

    Learning Goal: To identify the directions of the shear and normal stresses in a simply supported straight beam subjected to a vertical point load. When a beam is subjected to both internal shear and bending moment, both normal and shear stresses will be developed within the beam. The normal stress at a point is related to the bending My moment by the flexure formula, o = where y is the I perpendicular distance of the point from the neutral axis....

  • A column with a wide-flange section has a flange width b = 400 mm , height...

    A column with a wide-flange section has a flange width b = 400 mm , height h = 400 mm , web thickness tw = 13 mm , and flange thickness tf = 21 mm (Figure 1). Calculate the stresses at a point 65 mm above the neutral axis if the section supports a tensile normal force N = 3 kN at the centroid, shear force V = 7.4 kN , and bending moment M = 4 kN⋅m as shown...

  • Learning Goal: To determine the state of stress in a solid rod using the principle of...

    Learning Goal: To determine the state of stress in a solid rod using the principle of superposition. A solid rod has a diameter of e = 55 mm and is subjected to the loading shown. Let a = 190 mm, b = 220 mm , c = 350 mm, d = 240 mm , and P = 4.0 kN. Take point A to be at the top of the circular cross-section. (Figure 1) Figure < 1 of 2 b В...

  • Learning Goal: To use the superposition principle to find the state of stress on a beam...

    Learning Goal: To use the superposition principle to find the state of stress on a beam under multiple loadings. The beam shown below is subjected to a horizontal force P via the rope wound around the pulley. The state of stress at point A is to be determined. P 1d4 di dz d2 20 mm T 100 mm 200 mm 15 mm 20 mm 150 mm The dimensions are di = 1.85 m, d2 = 0.5 m, dz = 0.9...

  • Leaming Goal: To determine the shear stresses at specific locations in a beam due to an...

    Leaming Goal: To determine the shear stresses at specific locations in a beam due to an external loading. Beam ABC is subjected to the loading shown, where PB = 40.0 kN. The measurement corresponding to the half-length of the beam is a = 2.50 m. For the cross section shown, b = 50.0 mm, c= 125.0 mm, d = 125.0 mm, and e = 65.0 mm Point Dis located at the centroid of the cross section and point E is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT