Question

Assume our velocity selector is a bit leaky and lets the other 2 isotopes through to the mass spectrometer.

JUST 3 AND 4An Iron-Nickel sample from a meteorite was placed into a velocity selector and mass spectrometer. Experimenters expect 3 prim

0 0
Add a comment Improve this question Transcribed image text
Answer #1


4 . No We air magnetic force static Pg no 3 of 3. dont need to worry about doubly charged isotoper & electro force Cancel eac

Add a comment
Know the answer?
Add Answer to:
Assume our velocity selector is a bit leaky and lets the other 2 isotopes through to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Assume our velocity selector is a bit leaky and lets the other 2 isotopes through to...

    Assume our velocity selector is a bit leaky and lets the other 2 isotopes through to the mass spectrometer. 3. What is the spacing between the isotopes when they strike the detectors? Just 3 and 4 An Iron-Nickel sample from a meteorite was placed into a velocity selector and mass spectrometer. Experimenters expect 3 primary isotopes: 56Fe, 58Ni, & 60Ni. Positive ions are accelerated by an applied potential (AV) of 3300 Volts which is the same potential difference used to...

  • An Iron-Nickel sample from a meteorite was placed into a velocity selector and mass spectrometer. Experimenters...

    An Iron-Nickel sample from a meteorite was placed into a velocity selector and mass spectrometer. Experimenters expect 3 primary isotopes: 56Fe, 58Ni, & 60Ni. Positive ions are accelerated by an applied potential (ΔV) of 3300 Volts which is the same potential difference used to create the electric field in the velocity selector, where d is 1.1 cm. Need 3 and 4. An Iron-Nickel sample from a meteorite was placed into a velocity selector and mass spectrometer. Experimenters expect 3 primary...

  • AV An Iron-Nickel sample from a meteorite was placed into a velocity selector and mass spectrometer....

    AV An Iron-Nickel sample from a meteorite was placed into a velocity selector and mass spectrometer. Experimenters expect 3 primary isotopes: 56Fe, 58Ni, & boni. Positive ions are accelerated by an applied potential (AV) of 3300 Volts which is the same potential difference used to create the electric field in the velocity selector, where d is 1.1 cm. 1. On the figure provided, in the velocity selector region, (A) draw the direction of the electric field. (B) Draw the necessary...

  • What does in sub mean?? An Iron-Nickel sample from a meteorite was placed into a velocity...

    What does in sub mean?? An Iron-Nickel sample from a meteorite was placed into a velocity selector and mass spectrometer. Experimenters expect 3 primary isotopes: 56Fe, 58Ni, & 60Ni. Positive ions are accelerated by an applied potential (AV) of 3300 Volts which is the same potential difference used to create the electric field in the velocity selector, where d is 1.1 cm. 1. On the figure provided, in the velocity selector region, (A) draw the direction of the electric field....

  • In the Bainbridge mass spectrometer (Figure 1) , the magnetic-field magnitude in the velocity selector is...

    In the Bainbridge mass spectrometer (Figure 1) , the magnetic-field magnitude in the velocity selector is 0.510 T , and ions having a speed of 1.82×106m/s pass through undeflected. A) What is the electric-field magnitude in the velocity selector? b) If the separation of the plates is 5.20mm, what is the potential difference between the plates? Figure 1of 1 ㄧㄨㄨㄨ

  • The velocity selector in in a mass spectrometer consists of a uniform magnetic field oriented at...

    The velocity selector in in a mass spectrometer consists of a uniform magnetic field oriented at 90 degrees to a uniform electric field so that a charge particle entering the region perpendicular to both fields will experience an electric force and a magnetic force that are oppositely directed. If the uniform magnetic field has a magnitude of 11.2 mT, then calculate the magnitude of the electric field that will cause a proton entering the velocity selector at 16.1 km/s to...

  • Tipler6 26.P.042. Before entering a mass spectrometer, ions pass through a velocity selector consisting of parallel...

    Tipler6 26.P.042. Before entering a mass spectrometer, ions pass through a velocity selector consisting of parallel plates separated by 1.5 mm and having a potential difference of 150 V. The magnetic field between the plates is 0.42 T. The magnetic field in the mass spectrometer is 1.2 T. (a) Find the speed of the ions entering the mass spectrometer. ___ m/s (b) Find the difference in the diameters of the orbits of singly ionized 238U and 235U. (The mass of...

  • Using magnetic and electric fields, you want to create a spectrometer to sort isotopes of hydrogen...

    Using magnetic and electric fields, you want to create a spectrometer to sort isotopes of hydrogen ions. A stream of 1H, 2 H+, and > H+ are accelerated to 2.00x105 m/s and launched into a velocity selector in a region where you can establish a uniform magnetic field with a strength of 240 mt. What electric field will you need to see that only ions with this speed make it into the spectrometer? How far away from the entrance to...

  • A singly ionized particle (charge =+e) beam of various isotopes moving at various speeds through a...

    A singly ionized particle (charge =+e) beam of various isotopes moving at various speeds through a region of electric and magnetic fields ,with E V m =1000 / and B T = 0.5 . a) what should be the angle between these crossed fields so that they act like a velocity selector? Draw a picture indicating field directions. b) Explain clearly how this setup selects a single velocity among many within the beam. c) Calculate the value of this selected...

  • The velocity selector in in a mass spectrometer has a uniform 0.0506 T magnetic field oriented...

    The velocity selector in in a mass spectrometer has a uniform 0.0506 T magnetic field oriented in the negative y direction and a uniform 294 kV/m electric field oriented in the positive z direction. What is the kinetic energy (in electron volts) of the electron that will pass through this velocity selector in the +x direction undeflected?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT