Question

2. A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of k=1 W/mK, c=1600J/kg.K, and p=400 kg/m3. (a

0 0
Add a comment Improve this question Transcribed image text
Answer #1

GIVEN DATA D = 40mm = 0,04m L Im C = I wlmk 1600J/kg.k 400kg/m3 Р (a) 2x100 w/m3 १५ Heat generated TA чоо к h 50 wlm²K Ts = ?( 7 = 1s 1 2 case 1: time required to T-sook – GIUGN reach sook 7 - Too - ht Sclc e V To - To La = 50xt As TIR?L 400x1600X

Add a comment
Know the answer?
Add Answer to:
2. A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of k=1...

    A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of k=1 W/ mK, c=1600J/kg.K, and p=400 kg/mº. (a)Heat is generated uniformly in the rod with q'"' = 2 x 10 W/m. The rod is first cooled in oil with constant temperature Tu= 400 K and average heat transfer coefficient h=50 W/m2K. Under steady state, determine the surface temperature of the rod Ts. (10 pts) (b)Now the heat generation in the rod is stopped, where q'"'...

  • 2. A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of...

    2. A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of k=1 W/mK, c=1600J/kg.K, and p=400 kg/m3. (a)Heat is generated uniformly in the rod with q'"' = 2 x 106 W/m?. The rod is first cooled in oil with constant temperature To= 400 K and average heat transfer coefficient h=50 W/m².K. Under steady state, determine the surface temperature of the rod Ts. (10 pts) (b)Now the heat generation in the rod is stopped, where q'"...

  • 2. A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of...

    2. A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of k=1 W/mK, c=1600J/kg.K, and p=400 kg/m3. (a)Heat is generated uniformly in the rod with q'"' = 2 x 106 W/m?. The rod is first cooled in oil with constant temperature To= 400 K and average heat transfer coefficient h=50 W/m².K. Under steady state, determine the surface temperature of the rod Ts. (10 pts) (b)Now the heat generation in the rod is stopped, where q'"...

  • 2. A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of...

    2. A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of k=1 W/mK, c=1600J/kg-K, and p=400 kg/m² (a)Heat is generated uniformly in the rod with q'"' = 2 x 106 W/m. The rod is first cooled in oil with constant temperature To= 400 K and average heat transfer coefficient h=50 W/m2K. Under steady state, determine the surface temperature of the rod Ts. (10 pts) (b)Now the heat generation in the rod is stopped, where q"'...

  • 2. A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of...

    2. A nuclear fuel rod with diameter of D=40 mm and length L=1m, has properties of k=1 W/mK, c=1600J/kg-K, and p=400 kg/m² (a)Heat is generated uniformly in the rod with q'"' = 2 x 106 W/m. The rod is first cooled in oil with constant temperature To= 400 K and average heat transfer coefficient h=50 W/m2K. Under steady state, determine the surface temperature of the rod Ts. (10 pts) (b)Now the heat generation in the rod is stopped, where q"'...

  • A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform...

    A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform volumetric heat generation of 5.0 x 10 W/m². The rod is encapsulated by a circular sleeve having an outer diameter of 400 mm and a thermal conductivity of 4 W/mK. The outer surface of the sleeve is exposed to cross flow of air at 27°C with a convection coefficient of 25 W/m2K (a) Find the temperature at the Interface between the rod and sleeve...

  • NE Steel tubes (k =35 W/m2.K) of 400-mm inner diameter and 30-mm wall thickness are used...

    NE Steel tubes (k =35 W/m2.K) of 400-mm inner diameter and 30-mm wall thickness are used to route superheated steam from the boller to the turbine in a power plant. Safety and economic concerns make it practical to add a 200-mm layer of Insulation (k =0.1 W/mK) to each tube, which is wrapped in a thin sheet of aluminum with an emissivity e =0.15. The air (with a convective coefficient h =5 W/m2K) and wail temperatures of the plant are...

  • A cylindrical fuel rod 50mm in diameter has a uniform internal heat generation of ??1̇ =...

    A cylindrical fuel rod 50mm in diameter has a uniform internal heat generation of ??1̇ = 7*107 W/m3 . Under steady-state conditions, the temperature distribution is ??(??) = ?? + ????2, where T is in Celsius, ?? is in meters, ?? = 750°C, and ?? = -5.40*105 °C/m2 . The fuel rod properties are k=25 W/(m K), density= 1100 kg/m3 , and cp = 750 J/(kg K). (a) Determine the heat transferred (in Watts) at r=0 (centerline) and r=ro (outer...

  • A brass rod (k = 133 W/m-K) with a diameter of 5 mm and a length...

    A brass rod (k = 133 W/m-K) with a diameter of 5 mm and a length of 100 mm is used to enhance heat transfer from a surface which is maintained at 200 C. The cylindrical surface of   the rod is exposed to a convection environment with h = 30 W/m2-K and an ambient temperature of 20 C.        a) Calculate the heat convected away from the rod. b) Calculate the temperature 50 mm from the wall. c) Plot the temperature...

  • A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process

    A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process. The center, 30-mm-long portion of the rod within the induction heating coil experiences uniform volumetric heat generation of 7.5 x 106 W/m3. The unheated portions of the rod, which protrude from the heating coil on either side, experience convection with the ambient air at T∞ = 20 °C and h = 10 W/m2K. Assume that there is no convection...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT