Question

Consider the system shown in the following. Determine the value of k such that the damping ratio } is 0.5. Then obtain the ri

1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

to | 50394 kW) slikest (11) +0.8716K T.F. (5) RES) 16 s(s+0.5 +16%) + 16 0.8t 16k 16 s² + 510.8716k) + 16 -0 ea - 0 compuse wpeak timer tp= I ConJ1-6² T 451-052 10.9066 seel To Meek orenturt Ma e --677 TE .o.50 -0.52 = e 7 Mp - 16.301 settling Time t

Add a comment
Know the answer?
Add Answer to:
Consider the system shown in the following. Determine the value of k such that the damping...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Topic: Second order system 4. pts) For the linear system with a block diagram shown: a....

    Topic: Second order system 4. pts) For the linear system with a block diagram shown: a. Find the closed loop transfer function C(s)/R(s) b. Find the value of K and the location of the poles C(s) R(s) for a damping ratio equal to 0.5 S+0.8 c. When the input is a unit-step and the damping ratio is 0.5 Find Peak Time (Tp), Maximum Overshoot (Mp) and Settling Time (Ts)

  • please help to solve this. Thank you B1. Consider the second order system where damping ratio...

    please help to solve this. Thank you B1. Consider the second order system where damping ratio 3-0.6 and natural angular frequency Ww=5 rad/sec. find the rise time tr, peak time tp, maximum overshoot Mp, and settling time ts (2%) when the system is subjected to a unit-step input. I B2. Find the steady-state errors for inputs of 5 u(t), 5t u(t), and 5t.u(t) to the system shown in the following figure. The function u(t) is the unit step. R(S) +...

  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2b). i Determine the value in so that the damping ratio of the system is 0.5. (1 % marks) From the result obtained in , evaluate the transient response characteristics (rise...

  • a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak...

    a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i Determine the value K, so that the damping ratio of the system is 0.5. (1 % marks) ii. From the result obtained in (), evaluate the transient response characteristics (rise time,...

  • a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak...

    a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i. Determine the value Kn so that the damping ratio of the system is 0.5. (1 22 marks) ii. iii. From the result obtained in (i), evaluate the transient response characteristics (rise...

  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). Determine the value K, so that the damping ratio of the system is 0.5. (1 % marks) i. From the result obtained in (), evaluate the transient response characteristics (rise...

  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i Determine the value Kso that the damping ratio of the system is 0.5. (1 % marks) i. From the result obtained in (), evaluate the transient response characteristics (rise...

  • . a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time,...

    . a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i. Determine the value Kn so that the damping ratio of the system is 0.5. (1 % marks) ii. From the result obtained in (), evaluate the transient response characteristics (rise...

  • Do only parts C and D 1. A second-order system has the following transfer function that...

    Do only parts C and D 1. A second-order system has the following transfer function that describes its response: F(s)- s2 +as + 9 A. For a -3, calculate the following performance specifications of the system: Natural frequency (on) Damping ratio( Estimated rise time and settling time with ±5% change (tr, ts) Estimated overshoot (MP) . B. Label (a) ±5% range of steady state, (b) tr, (c) ts, and (d) MP on the step response curve below (You may also...

  • question 2 Question 2 a) Consider the control system in Figure 2(a). Determine the transient response...

    question 2 Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). Determine the value Kin so that the damping ratio of the system is 0.5. (1 % marks) it. From the result obtained in 0. evaluate the transient response...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT