Question
please solve 2
QUESTION 2 a) (5 p) Interpret the rocket equation dv(t)M(1)=-udMO [EQ.1) within the framework of the law of momentan conserva
0 0
Add a comment Improve this question Transcribed image text
Answer #1

1 AP M = mass of the rocket at M wp-W t tudt dm (a) Suppose Initially, Mo = initial mass of rocket + fuel Võ = initial velocisuppose ut ug: - put this in eqr & we get M (t) du(t)= - U AM (E). Hence proved (6) Now From eqn@ du(t) = -0 DM(t) MCE) At t=Thus we conclude that the thrust F on the rocket at any instant is the product of velocity of ex haust gases and the rate of

Add a comment
Know the answer?
Add Answer to:
please solve 2 QUESTION 2 a) (5 p) Interpret the rocket equation dv(t)M(1)=-udMO [EQ.1) within the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • QUESTION 2 25 a) (5 p) Interpret the rocker equation dv(t)M(t)=-udMO (EQ.1) within the framework of...

    QUESTION 2 25 a) (5 p) Interpret the rocker equation dv(t)M(t)=-udMO (EQ.1) within the framework of the law of momentum conservation, written in a closed system here Mt) is the rocket mass, at time t, whereas dM(t) is by definition, dMtM(t+dt)-M(t): -dM(t)=dM(1), is the mass of the gas thrown by the rocket through the infinitely small period of time dt; on the other hand, dv(t) is still by definition, dv(t)=v(t+dt)-v(t), i.e. the increase in the velocity of the rocker through...

  • a) (5 p) Interpret the rocker equation dv(t)M(t)=-udM(t) (EQ.1) within the framework of the law of...

    a) (5 p) Interpret the rocker equation dv(t)M(t)=-udM(t) (EQ.1) within the framework of the law of momentum conservation, written in a closed system, here M(t) is the rocker mass, at time t, whereas M(t) is by definition, dM(t)-M(t+dt)-M(t): - dM(t)-dM(t), is the mass of the gas thrown by the rocket through the infinitely small period of time dt; on the other hand, dv(t) is, still by definition, dv(t)-v(t+dt)-v(t), i.e. the increase in the velocity of the rocker through the period...

  • QUESTION 2 a) (5 p) Interpret the rocket equation dv(OM(t)=-udMO (EQ.1) within framework of the law...

    QUESTION 2 a) (5 p) Interpret the rocket equation dv(OM(t)=-udMO (EQ.1) within framework of the law of momentum conservation, written in a closed system, here M(t) is the rocket mass, at time t, whereas M(t) is by definition, dM(t)=M(t+dt)-M(t): -dM(t)=dM(t), is the mass of the gas thrown by the rocket through the infinitely small period of time dt; on the other hand, dv(t) is, still by definition, dv(t)=v(t+dt)-vít).i.e. the increase in the velocity of the rocket through the period of...

  • QUESTION 2 a) (5 p) Interpret the rocket equation dv(OM(t)=-udMO [EQ.1) within the framework of the...

    QUESTION 2 a) (5 p) Interpret the rocket equation dv(OM(t)=-udMO [EQ.1) within the framework of the law of momentum conservation, written in a closed system, here Mt) is the rocket mass, time t, whereas M(t) is by definition, dM(t)=M(t+dt)-M(t): -dM(t)-dM(t), is the mass of the gas thrown by the rocket through the infinitely small period of time dt: on the other hand, dv(t) is, still by definition, dv(t)v(t+dt)-vít), i.e. the increase in the velocity of the rocket through the period...

  • of the a) (5 p) Interpret the rocket equation dv(t)M(t)=-udM(t) [EQ.1) within the framework law of...

    of the a) (5 p) Interpret the rocket equation dv(t)M(t)=-udM(t) [EQ.1) within the framework law of momentum conservation, written in a closed system; here M(t) is the rocket mass, at time t, whereas dM(t) is by definition, dM(t)=M(t+dt)-M(t); dM(t)=|dM(t), is the mass of the gas thrown by the rocket through the infinitely small period of time dt; on the other hand, dv(t) is, still by definition, dv(t)=v(t+dt)-v(t), i.e. the increase in the velocity of the rocket through the period of...

  • Interpret the rocket equation  dv(t)M(t)=-udM(t) [EQ.1] within the framework of the law of momentum conservation, written in...

    Interpret the rocket equation  dv(t)M(t)=-udM(t) [EQ.1] within the framework of the law of momentum conservation, written in a closed system; here M(t) is the rocket mass, at time t, whereas dM(t) isby definition, dM(t)=M(t+dt)-M(t); -dM(t)=|dM(t)|, is the mass of the gas thrown by the rocket through the infinitely small period of time dt; on the other hand, dv(t) is, still by definition, dv(t)=v(t+dt)–v(t), i.e. theincrease in the velocity of the rocket through the period of time dt; u is the relative...

  • a) (15 p) We consider a nuclear reactor of power output P=1000 Megawatt (1000 million watts)...

    a) (15 p) We consider a nuclear reactor of power output P=1000 Megawatt (1000 million watts) electric, functioning with Plutonium. It is fueled, initially, with 1000 kg of Plutonium. The nuclear material in question is made of Plutonium nuclei, each 239 consisting in 94 protons and 239-94-145 neutrons, which is denominated by the symbol 94Pu. For thermodynamical rd reasons, only 1/3 of the nuclear energy in the form of heat produced by the reactor, can be converted into electricity. How...

  • *) (15 p) We considera muclear reactor of power output P-1000 Megowott 1000 million wot elect,...

    *) (15 p) We considera muclear reactor of power output P-1000 Megowott 1000 million wot elect, can with Plutonium. Bifueled, initially with 1000 kg of Plutonium. The nuclear teslim 239 question is made of Plutonium nuclei, each consisting in 94 protons and 239-94145 euro the symbol For thermodynamical reasons, only 1.3 in the form of heat produced by the reactor, can be converted into electricity. How much mass deficit should the nucle fuel of concer delicates if the reactor is...

  • please solve QUESTION 1 239 a) (15 p) We consider a nuclear reactor of power output...

    please solve QUESTION 1 239 a) (15 p) We consider a nuclear reactor of power output P-1000 Megawott (1000 million watts) electric functioning with Plutonium. It is fueled, initially, with 1000 kg of Plutonium. The nuclear material in question is made of Plutonium nuclei, each consisting in 94 protons and 239-94-145 neutrons, which is rd denominated by the symbol 94 Pu For thermodynamical reasons, only 1/3 of the nuclear energy in the form of heat produced by the reactor, can...

  • please answer all pre-lab questions 1 through 5. THANK YOU!!! this is the manual to give...

    please answer all pre-lab questions 1 through 5. THANK YOU!!! this is the manual to give you some background. the pre-lab questions.. the pre-lab sheet. Lab Manual Lab 10: String Waves & Resonance Before the lab, read the theory in Sections 1-3 and answer questions on Pre-lab Submit your Pre-lab at the beginning of the lab. During the lab, read Section 4 and follow the procedure to do the experiment. You will record data sets, perform analyses, answer questions, and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT