Question

QUESTION 2 a) (5 p) Interpret the rocket equation dv(OM(t)=-udMO (EQ.1) within framework of the law of momentum conservation,

0 0
Add a comment Improve this question Transcribed image text
Answer #1

I have solved your problem which is shown below:

Answer: Rocket propulsion is based on the principal of conservation of momentum assuming that there is no external force are acting on it. In rocket propulsion gases are produced by combustion of fuel in the combustion chamber like in this experiment liquid CO2 changes to gases CO2 are ejected out from the pipe. The force with which gas is ejected in the downward direction provides a reaction force on the rocket in the upward direction. Due to this force the cart moves forward.

The mass of the whole system doesn’t change but as the time passage the mass of the rocket decreases (excluding ejected gas). Some mass change into form of energy which leads to energy mass conversion.

The linear momentum of the ejected gas in the backward direction or in case of rocket in downward direction is equal and opposite to the linear momentum of this cart in forward direction or in case of rocket in upward direction respectively. If the rate of ejection of gases is constant through the experiment the rate of change of momentum will also be constant through the experiment.

However mass of the rocket keeps decreasing so as the acceleration and velocity of the rocket keeps on increasing and in this case the velocity of the cart increases as the ejection of gases increases.

In case you have any query please write in a comment. I hope you like it. Thank you

Subbodels Intially ū moz intial mass of rocket fuel vede up-u ū= intial velocity of rocket t Ztt de man of the rocket at am iAccondensg N law of Conseruahon uf momentum P =P2 Equate est & we get Mlti (+//v. Mletu + McEldu dmc+) Curug ] - docti due Sujau du- (MLA) dult) mo [u Ju M [loge ] Mo Ultivo [loge Mitla loge Mo Mo] ultivo u[lose Mo - loge MLt)] وخامت ۱ ما u loge Mo MThus conclude that the thrust F on the rocket Cet of exhaust any ins tant is the product of velocity gases and the rate of co

Add a comment
Know the answer?
Add Answer to:
QUESTION 2 a) (5 p) Interpret the rocket equation dv(OM(t)=-udMO (EQ.1) within framework of the law...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • QUESTION 2 a) (5 p) Interpret the rocket equation dv(OM(t)=-udMO [EQ.1) within the framework of the...

    QUESTION 2 a) (5 p) Interpret the rocket equation dv(OM(t)=-udMO [EQ.1) within the framework of the law of momentum conservation, written in a closed system, here Mt) is the rocket mass, time t, whereas M(t) is by definition, dM(t)=M(t+dt)-M(t): -dM(t)-dM(t), is the mass of the gas thrown by the rocket through the infinitely small period of time dt: on the other hand, dv(t) is, still by definition, dv(t)v(t+dt)-vít), i.e. the increase in the velocity of the rocket through the period...

  • QUESTION 2 25 a) (5 p) Interpret the rocker equation dv(t)M(t)=-udMO (EQ.1) within the framework of...

    QUESTION 2 25 a) (5 p) Interpret the rocker equation dv(t)M(t)=-udMO (EQ.1) within the framework of the law of momentum conservation, written in a closed system here Mt) is the rocket mass, at time t, whereas dM(t) is by definition, dMtM(t+dt)-M(t): -dM(t)=dM(1), is the mass of the gas thrown by the rocket through the infinitely small period of time dt; on the other hand, dv(t) is still by definition, dv(t)=v(t+dt)-v(t), i.e. the increase in the velocity of the rocker through...

  • a) (5 p) Interpret the rocker equation dv(t)M(t)=-udM(t) (EQ.1) within the framework of the law of...

    a) (5 p) Interpret the rocker equation dv(t)M(t)=-udM(t) (EQ.1) within the framework of the law of momentum conservation, written in a closed system, here M(t) is the rocker mass, at time t, whereas M(t) is by definition, dM(t)-M(t+dt)-M(t): - dM(t)-dM(t), is the mass of the gas thrown by the rocket through the infinitely small period of time dt; on the other hand, dv(t) is, still by definition, dv(t)-v(t+dt)-v(t), i.e. the increase in the velocity of the rocker through the period...

  • Interpret the rocket equation  dv(t)M(t)=-udM(t) [EQ.1] within the framework of the law of momentum conservation, written in...

    Interpret the rocket equation  dv(t)M(t)=-udM(t) [EQ.1] within the framework of the law of momentum conservation, written in a closed system; here M(t) is the rocket mass, at time t, whereas dM(t) isby definition, dM(t)=M(t+dt)-M(t); -dM(t)=|dM(t)|, is the mass of the gas thrown by the rocket through the infinitely small period of time dt; on the other hand, dv(t) is, still by definition, dv(t)=v(t+dt)–v(t), i.e. theincrease in the velocity of the rocket through the period of time dt; u is the relative...

  • of the a) (5 p) Interpret the rocket equation dv(t)M(t)=-udM(t) [EQ.1) within the framework law of...

    of the a) (5 p) Interpret the rocket equation dv(t)M(t)=-udM(t) [EQ.1) within the framework law of momentum conservation, written in a closed system; here M(t) is the rocket mass, at time t, whereas dM(t) is by definition, dM(t)=M(t+dt)-M(t); dM(t)=|dM(t), is the mass of the gas thrown by the rocket through the infinitely small period of time dt; on the other hand, dv(t) is, still by definition, dv(t)=v(t+dt)-v(t), i.e. the increase in the velocity of the rocket through the period of...

  • please solve 2 QUESTION 2 a) (5 p) Interpret the rocket equation dv(t)M(1)=-udMO [EQ.1) within the...

    please solve 2 QUESTION 2 a) (5 p) Interpret the rocket equation dv(t)M(1)=-udMO [EQ.1) within the framework of the law of momentan conservation, written in a closed system here M(t) is the rocket mass, at time t, whereas dMt) is by definition, dM(t)-M(t+dt)-M(t): -SM(t)-M(!), is the mass of the gas thrown by the rocket through the infinitely small period of time dt; on the other hand, dv(t) is still by definition, dy(t){t+dt)-v(t), i.e. the increase in the velocity of the...

  • a) (15 p) We consider a nuclear reactor of power output P=1000 Megawatt (1000 million watts)...

    a) (15 p) We consider a nuclear reactor of power output P=1000 Megawatt (1000 million watts) electric, functioning with Plutonium. It is fueled, initially, with 1000 kg of Plutonium. The nuclear material in question is made of Plutonium nuclei, each 239 consisting in 94 protons and 239-94-145 neutrons, which is denominated by the symbol 94Pu. For thermodynamical rd reasons, only 1/3 of the nuclear energy in the form of heat produced by the reactor, can be converted into electricity. How...

  • *) (15 p) We considera muclear reactor of power output P-1000 Megowott 1000 million wot elect,...

    *) (15 p) We considera muclear reactor of power output P-1000 Megowott 1000 million wot elect, can with Plutonium. Bifueled, initially with 1000 kg of Plutonium. The nuclear teslim 239 question is made of Plutonium nuclei, each consisting in 94 protons and 239-94145 euro the symbol For thermodynamical reasons, only 1.3 in the form of heat produced by the reactor, can be converted into electricity. How much mass deficit should the nucle fuel of concer delicates if the reactor is...

  • Question 8 please 5. We start with Schrodinger's Equation in 2(x,t) = H¥(x,t). We can write...

    Question 8 please 5. We start with Schrodinger's Equation in 2(x,t) = H¥(x,t). We can write the time derivative as 2.4(x, t) = V(x,+) - (xt), where At is a sufficiently small increment of time. Plug the algebraic form of the derivative into Schrodinger's Eq. and solve for '(x,t+At). b. Put your answer in the form (x,t+At) = T '(x,t). c. What physically does the operator T do to the function '(x,t)? d. Deduce an expression for '(x,t+24t), in terms...

  • 1. When the solar system first formed, it was characterized by a disk of dust and...

    1. When the solar system first formed, it was characterized by a disk of dust and gas (called the "solar nebula") with some larger planetesimals embedded within it. As these planetesimals orbited in the solar nebula, they continually accreted material from the nebula, slowly growing in size. In this problem, we will estimate how long it took these planetesimals to grow into reasonably sized objects i.e. a thousand km or so in size). a) If a planetesimal has a cross-sectional...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT