Question

here is the question, please help me with this question

When a 5 kg mass is attached to a spring whose constant is 180 N/m, it comes to rest in the equilibrium position. Starting at

0 0
Add a comment Improve this question Transcribed image text
Answer #1

-5t fit) = 20e When a 5 kg mass is attached to a spring whose constant is 180 N/m, it comes to rest in the equilibrium positist =4e cost D²10D +61 - -46 est . il cosat cost -3²10D+6l FLD²) 1 cosat 1 = 46-5t Fl-a3 cosat S2-10D =40 St (52+10D) cost 52²• given, ylo)=0 0= –66, sinot 6gasot Leo (-156 Sino-go coso) { e(52650-30 sino) 901 5 90) ► 02 0+642-90 246 gol gol 69=2350

Add a comment
Know the answer?
Add Answer to:
here is the question, please help me with this question When a 5 kg mass is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • When a 5 kg mass is attached to a spring whose constant is 45 N/m, it...

    When a 5 kg mass is attached to a spring whose constant is 45 N/m, it comes to rest in the equilibrium position. Starting at t= 0, a force equal to f(t) 30e-3t cos 4t is applied to the system. In the absence of damping, (a) find the position of the mass when t= 1. (b) what is the amplitude of vibrations after a very long time?

  • When a 4 kg mass is attached to a spring whose constant is 100 N/m, it...

    When a 4 kg mass is attached to a spring whose constant is 100 N/m, it comes to rest in the equilibrium position. Starting at t= 0, a force equal to f(t) = 12e-3t cos 6t is applied to the system. In the absence of damping, (a) find the position of the mass when t= 1. (b) what is the amplitude of vibrations after a very long time?

  • When a 6 kg mass is attached to a spring whose constant is 54 N/m, it...

    When a 6 kg mass is attached to a spring whose constant is 54 N/m, it comes to rest in the equilibrium position. Starting at 1 = 0, a force equal to f(t) = 30e-7t cos 6t is applied to the system. In the absence of damping. (a) find the position of the mass when t=1. (b) what is the amplitude of vibrations after a very long time?

  • : When a 3 kg mass is attached to a spring whose constant is 12 N/m,...

    : When a 3 kg mass is attached to a spring whose constant is 12 N/m, it comes to rest in the equilibrium position. Starting at i=0, a force equal to f(t) = 15e-54 cos 4t is applied to the system. In the absence of damping, (a) find the position of the mass when t=n. (b) what is the amplitude of vibrations after a very long time?

  • : When a 3 kg mass is attached to a spring whose constant is 12 N/m,...

    : When a 3 kg mass is attached to a spring whose constant is 12 N/m, it comes to rest in the equilibrium position. Starting at i=0, a force equal to f(t) = 15e-54 cos 4t is applied to the system. In the absence of damping, (a) find the position of the mass when t=n. (b) what is the amplitude of vibrations after a very long time?

  • When a 6 kg mass is attached to a spring whose constant is 54 N/m, it...

    When a 6 kg mass is attached to a spring whose constant is 54 N/m, it comes to rest in the equilibrium position. Starting at i = 0, a force equal to f(0) = 30e-7t cos 6t is applied to the system. In the absence of damping, (a) find the position of the mass when t= 1. (b) what is the amplitude of vibrations after a very long time?

  • When a 6 kg mass is attached to a spring whose constant is 54 N/m, it...

    When a 6 kg mass is attached to a spring whose constant is 54 N/m, it comes to rest in the equilibrium position. Starting at i = 0, a force equal to f(0) = 30e-7t cos 6t is applied to the system. In the absence of damping, (a) find the position of the mass when t= 1. (b) what is the amplitude of vibrations after a very long time?

  • 1) When a mass of 3 kilograms is attached to a spring whose constant is 48...

    1) When a mass of 3 kilograms is attached to a spring whose constant is 48 N/m, it comes to rest in the equilibrium position. Starting at t = 0, a force equal to f(t) = 180e−4t cos(4t) is applied to the system. Find the equation of motion in the absence of damping. x(t) = 2) Solve the given initial-value problem. d2x dt2 + 9x = 5 sin(3t), x(0) = 6,  x'(0) = 0 x(t) =

  • Problem #7; when a 3 kg mass is attached to a spring whose constant is 12 N/m, it comes to rest in the equilibrium posi...

    Problem #7; when a 3 kg mass is attached to a spring whose constant is 12 N/m, it comes to rest in the equilibrium position. cos 2t is applied to the system. In the absence of damping, Starting at t0, a force equal to f(t) = 18e (a) find the position of the mass when t= N. (b) what is the amplitude of vibrations after a very long time? Problem #7(a): -0.1875 Round your answer to 4 decimals. Problem #7(b):...

  • A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes...

    A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time t = 0, an external force of F(t) = 3 cos 3t lb is applied to the system. If the spring constant is 15 lb/ft and the damping constant is 4 lb-sec/ft, find the steady-state solution for the system. Use g = 32 ft /sec. The steady-state solution is y(t) = | |

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT