Question

Solve the following problems:

P.1 Design a PID (or a Pl only) for the following unity feedback system as shown in the figure, where G(s) = к (s+1)(s+3)(s+1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ginen GS) = K (S+1) (5+3) (stid) required specifications MP < 251 Is < 2 sec for step Pipe for step ile zero steady state errste ts <alec Settiling time for † 2.1. tolerence band. ts 4 kali &wn 4 0.492Xwn 42 wn> 0.492X & Wn >4.065 I take W, =4.07 ste

Add a comment
Know the answer?
Add Answer to:
Solve the following problems: P.1 Design a PID (or a Pl only) for the following unity...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • P.2 Design a PID (or a Pl only) for the following unity feedback system as shown...

    P.2 Design a PID (or a Pl only) for the following unity feedback system as shown in the figure, where G(s) = (5+1)(s+4) K EG) G The PID (or Pl only), needs to meet the following requirements: a) Tp < 1.047 b) Mp < 1.5% Hint: If designing a PID start now by designing the Pl with the pole and zero close to the origin and then the PD using the all the system's poles and zeros including the Pl.

  • Lag Compensator Design Using Root-Locus 2. Consider the unity feedback system in Figure 1 for G(s...

    Lag Compensator Design Using Root-Locus 2. Consider the unity feedback system in Figure 1 for G(s)- s(s+3(s6) Design a lag compensation to meet the following specifications The step response settling time is to be less than 5 sec. . The step response overshoot is to be less than 17% . The steady-state error to a unit ramp input must not exceed 10%. Dynamic specifications (overshoot and settling time) can be met using proportional feedback, but a lag compensator is needed...

  • Design of PID compensator S. Design of PID (Proportional-plus-Integral and Derivative) Compensator ds/i (st3)(s+6 s+10) and...

    Design of PID compensator S. Design of PID (Proportional-plus-Integral and Derivative) Compensator ds/i (st3)(s+6 s+10) and unity feedback Design a PID s+10) An uncompensated system has a gain controller so that the system can operate with a peak time that is two thirds that of the uncompensated system at 20% overshoot and with zero steady-state error for a step input. system has a gain Uncompensated system Compensated system K (s+8 G(s) = (s+3)(s+6)(s+10) ,H(s) = 1 20% OS; desired T,-23a...

  • b) Design a PID controller via root-locus to satisfy the following requirements for the controlled system...

    b) Design a PID controller via root-locus to satisfy the following requirements for the controlled system 2.9 T,-0.18 The following notation has been used for the system parameters: Percent Overshoot(%)-pos Settling time (s) Peak time (s)- Tp Start by manual calculations for the locations of the poles and zeros of the PID controller to satisfy the requirements. Find the required location of the zero for PD control and introduce PI control. Afterwards, use the Sisotool in MATLAB to simulate the...

  • C(s) G(s) Figure 1: A block diagram for Problems 1-4 For the given unity feedback system with G(s...

    C(s) G(s) Figure 1: A block diagram for Problems 1-4 For the given unity feedback system with G(s) - s 5)3' (a) Find the location of the dominant poles to yield a 1.2 second settling time and overshoot of 15% (b) If a compensator with a zero at-1 is used to achieve the conditions of Part a, what must be the angular contribution of the compensator pole be? (c) Find the location of the compensator pole. (d) Find the gain...

  • Please solve with detailed steps (NO MATLAB Solution).Thanks in advance 13. Consider the unity feedback system...

    Please solve with detailed steps (NO MATLAB Solution).Thanks in advance 13. Consider the unity feedback system of Figure P9.1 with K G(s) s(s +20)(s +40) The system is operating at 20% overshoot. Design a compensator to decrease the settling time by a factor of 2 without affecting the percent overshoot and do the following: (Section: 9.3] a. Evaluate the uncompensated system's dominant poles, gain, and settling time. b. Evaluate the compensated system's dominant poles and settling time. c. Evaluate the...

  • I have no more posting for this month, please solve these for me thanks 1. Given...

    I have no more posting for this month, please solve these for me thanks 1. Given the following unity feedback system where s+z s2 (s + 10) and the controller is a proportional controller Ge = K, do the following: a. If z = 2, find K so that the damped frequency of the oscillation of the transient response is 5 rad/s. b. The system is to be redesigned by changing the values of z and K. If the new...

  • Answer all parts and show all work. Design a Pl or PDcontroller for the system Go)+...

    Answer all parts and show all work. Design a Pl or PDcontroller for the system Go)+ 10 to meet the following specifications Zero steady state error for unit step reference input ·4 < 0.12s . %OS < 10%. (a) Determine the low frequency gain, crossover frequency and phase margin necessary to meet the (b) Decide if C() needs an integrator. Plot the Bode plot of either G(s) or G(o)/s, depending on (c) Use sisotool (or iteration) to choose a gain...

  • 1 Consider a unity feedback control system with plant transfer function G(s) (s+5) Design and implement...

    1 Consider a unity feedback control system with plant transfer function G(s) (s+5) Design and implement a controller without using pure differentiators or integrator to achieve the following specification: Mp <= 20%, tr <= 1 sec, and ess to acceleration 0.

  • [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root lo...

    [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain Kas a variable. s(s+4) (s2+4s+20) Determine asymptotes, centroid, breakaway point, angle of departure, and the gain at which root locus crosses ja-axis. A control system with type-0 process and a PID controller is shown below. Design the [8 parameters of the PID controller so that the following specifications are satisfied. =100 a)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT