Question

Using the Born-Haber cycle shown below, calculate the lattice energy for MgCl2 in kJ* mol-1 Mg**g) + 2Cl(g) 2 x-349 AH2nd le(
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Using the Born-Haber cycle shown below, calculate the lattice energy for MgCl2 in kJ* mol-1 Mg**g)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • please curcle answer thanks ill be sure to thumbs up Using the Born-Haber cycle shown below,...

    please curcle answer thanks ill be sure to thumbs up Using the Born-Haber cycle shown below, calculate the lattice energy for MgCl2 in kJ* mol-1 Mg*g) + 2Cl(g) 2 -349 AH2nd (Mg) - 1451 2xAH (01) --698 Mg*9) 2C119) Mg'ig)2Cl(g) 2x+122 AH. Pot (Mg) - 738 Mg(g) + 2Cl(g) 2xAH LCI - +244 Mgig). Clz (9 Mg(s) : AH (Mg) - 148 Cl2(g) AHTE MgCI) AH. (MgCl) --641 MgCl (s)

  • 2) Write down a Born-Haber cycle for magnesium oxide (Mg0). Using the data provided below, determine...

    2) Write down a Born-Haber cycle for magnesium oxide (Mg0). Using the data provided below, determine the experimental value of the lattice enthalpy Uexp. Now calculate the lattice enthalpy Ucale (unit cell of Mg0 shown below). What do these values tell you about the bonding in Mg0? AHP(Mg0)--602 k]/mol Alto (Mg) = + 148 kJ/mol AH to (02) = +249 kJ/mol bond enthalpy (02)+498 k]/mol 16, (Mg) = +738 kJ/mol IE2 (Mg) +1451 k]/mol EA (O) = +142 kJ/mol EA2(0)...

  • Draw the Born-Haber Cycle with these values and calculate lattice energy. Problem 1: Label each reaction...

    Draw the Born-Haber Cycle with these values and calculate lattice energy. Problem 1: Label each reaction listed below for the Born-Haber cycle in the formation of Cao lattice and calculate the lattice energy of Cal given the following information. AH KD) Ca(s) + Ca(8) 193 Calg) - Cat (8) + e 590 Cat (8) - Cat (8) + e- 2 O(g) + O2(g) O(8) + e- O (8) -141 O (8) + e- O (8) 878 Ca(s) + O2(g) →...

  • 3. Draw the Bom Haber Cycle and calculate the lattice energies for LiF, MgO, and CaC12...

    3. Draw the Bom Haber Cycle and calculate the lattice energies for LiF, MgO, and CaC12 using the data provided in the table below. This can be done on a separate page if you are working off this template. AH (1/2 B.E.) Electon Affinity Ionization Sublimation AH EA Energy Ionic Compoud F 80 kJ/mol 328 kJ/mol Li 520 kJ/mol 155 kJ/mol LiF -594 kJ/mol 0 249.4 kJ/mol 141 kJ/mol (15) . Mg 738 kJ/mol (19) 148 kJ/mol MgO -601 kJ/mol...

  • Question 4 4 pts Use the Born-Haber Cycle to calculate the lattice energy for the formation...

    Question 4 4 pts Use the Born-Haber Cycle to calculate the lattice energy for the formation of X2Y. Input your answer in units of kJ/mole with the correct sign. Process Enthalpy (kJ/mol). X(s)--> X(g) 115 X(g) -->X*(8) + le 499 Y2 (8) --> 2Y (8) 264 -295 Y (8) + 1e.-->Y (8) Y (8) + 1e' --> Y2 () 115 2X(s) +% Y2 (8)--> X2Y(s) -549

  • 4) Calculate the lattice enthalpy for calcium fluoride using the Born-Haber cycle method, using the provided...

    4) Calculate the lattice enthalpy for calcium fluoride using the Born-Haber cycle method, using the provided table. (Show all your work; 2 points) Enthalpies, AH/(kJ mol) +192 Process Sublimation of Ca(s) Ionization of Ca(g) Dissociation of F2(g) Electron gain by F(g) Formation of CaF (s) +1735 to Ca(ag +157 -328 -1220

  • Part I. Use a Born-Haber cycle to calculate the lattice energy of KCl from the following...

    Part I. Use a Born-Haber cycle to calculate the lattice energy of KCl from the following data. (5 marks) Ionization energy of K(g) = 444.0 kJ mol-1 Electron Affinity of Cl(g) = -381.0 kJ mol-1 Energy to Sublime K(s) = 152.0 kJ mol-1 Bond energy of Cl2 = 201.0 kJ mol-1 ∆rH for K(s) + 1/2 Cl2(g) ↔ KCl(s) = -480.0 kJ mol-1 art II. Using the lattice energy calculated in part I determine the enthalpy of solution potassium chloride...

  • 2) From the following data in the Born-Haber cycle, Na(s) → Na(g) 4C12(g) → Cl(g) AH:-108...

    2) From the following data in the Born-Haber cycle, Na(s) → Na(g) 4C12(g) → Cl(g) AH:-108 kJ/mol AHj - 495.9 kJ/mol ara =-349 kJ/mol Na(g) → Na+(g) + e- Cl(g) + e-→ Cl-(g) Na(s) +4C12(g) → NaCl(s) AHoverall =-411 kJ/mol calculate the lattice energy of NaCI.

  • 2. Find the experimental Lattice energy of aluminum oxide using a Born-Haber cycle using the following...

    2. Find the experimental Lattice energy of aluminum oxide using a Born-Haber cycle using the following information: AH (aluminum oxide) = -1676 kJ/mol IE, (aluminum) = 577.6 kJ/mol IE, (aluminum) =1816.7 kJ/mol IE, (aluminum) = 2744.8 kJ/mol AH® (aluminum atom, g) = 329.7 kJ/mol AHⓇEAI (oxygen) = -200.4 kJ/mol AHⓇEAT (oxygen) = 780.0 kJ/mol AH® (oxygen atom, g) = 249.2 kJ/mol Write each of the appropriate balanced chemical equations (with physical state) and assign the appropriate enthalpy to each. Be...

  • Use the Born Haber cycle (see equations and enthalpy values below) to determine the lattice energy...

    Use the Born Haber cycle (see equations and enthalpy values below) to determine the lattice energy for BeI2 (s) (∆H LE (BeI2 (s))= ?) Show your work. Box your final answer. A. Be(g)→Be1+ (g) + 1 e–∆H = + 899.5kJ B. Be1+ (g) →Be2+ (g) + 1 e–∆H = +1757 kJ C. Be(s)→Be(g)∆H= +302kJ D. I2(s)→I2(g)∆H= + 62.4kJ E. I(g) + e–→I–(g)∆H= –295kJ F. I2(g)→2I(g)∆H= + 151 kJ G. Be(s) + I2(s) →BeI2(s)∆H= –208 kJ

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT