Question
Please answer both parts a and b. Thanks
1. An object is 45 cm to the left of a positive (converging) lens, f +30 cm, as shown. a) Use the thin lens equation to locate the position of the image. (2 pts) Usin upright or inverted? (3 pts) F1 F2
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Convex ters T. F, 2 ens uation So f. 너

Add a comment
Know the answer?
Add Answer to:
Please answer both parts a and b. Thanks 1. An object is 45 cm to the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An upright object 1.75 cm tall is placed 38.0 cm to the left of a converging...

    An upright object 1.75 cm tall is placed 38.0 cm to the left of a converging lens having a focal length f1 = 28.0 cm. A converging lens of focal length f2 = 18.0 cm is placed 108 cm to the right of the first lens. (4points) Determine the final position of the final image. (4 points) Determine the total magnification of the final image. (3 points) Is the final image upright or inverted? Please show all step when solving...

  • 11.87 A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of...

    11.87 A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal length 8.20 cm. A diverging lens of focal length - 16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image. position Take the image formed by the first lens to be the object for the second lens and apply the lens equation to each lens to locate the final image. cm 8.442...

  • Two converging lenses having focal lengths off, = 11.3 cm and f, - 20.0 cm are...

    Two converging lenses having focal lengths off, = 11.3 cm and f, - 20.0 cm are placed d = 50.0 cm apart, as shown in the figure below. The final image is to be located between the lenses, at the position x = 33.3 cm Indicated. 12 Object Final image (5) How far (in cm) to the left of the first lens should the object be positioned? cm (b) What is the overall magnification of the system? (c) is the...

  • Two converging lenses having focal lengths of f1 = 10.5 cm and f2 = 20.0 cm...

    Two converging lenses having focal lengths of f1 = 10.5 cm and f2 = 20.0 cm are placed d = 50.0 cm apart, as shown in the figure below. The final image is to be located between the lenses, at the position x = 33.5 cm indicated. Object Final image (a) How far (in cm) to the left of the first lens should the object be positioned? cm (b) What is the overall magnification of the system? (c) Is the...

  • An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length o...

    An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length of 30.5 cm. A diverging lens with a focal length of-20.0 cm is placed 110 cm to the right of the converging lens. (a) Determine the position of the final image. distance location to the right , of the diverging lens (b) Determine the magnification of the final image 128.4 Your response differs from the correct answer by more than...

  • An object is placed 15.0 cm to the left of a convex (converging) lens of focal...

    An object is placed 15.0 cm to the left of a convex (converging) lens of focal length 20.0 cm. The image of this object is located (Figure out if the image is real or virtual, it will help to locate the image] O 60.0 cm to the left of the lens. O 60.0 cm to the right of the lens. O 8.57 cm to the right of the lens. O 8.57 cm to the left of the lens. Question 8...

  • An object 2.00 cm high is placed 45.3 cm to the left of a converging lens...

    An object 2.00 cm high is placed 45.3 cm to the left of a converging lens having a focal length of 40.3 cm. A diverging lens having a focal length of −20.0 cm is placed 110 cm to the right of the converging lens. (Use the correct sign conventions for the following answers.) (a) Determine the final position and magnification of the final image. (Give the final position as the image distance from the second lens.) final position cm magnification...

  • NOTE: PLEASE ONLY ANSWER PARTS C AND E-I. THANKS! A candle 7.60cm high is placed in...

    NOTE: PLEASE ONLY ANSWER PARTS C AND E-I. THANKS! A candle 7.60cm high is placed in front of a thin converging lens of focal length 38.5cm. a. What is the image distance i when the object is placed 108.5 cm in front of the same lens? b. What is the size of the image? (Note: an inverted image will have a `negative' size.) c. Is the image real(R) or virtual(V)?; upright(U) or inverted(I)?; larger(L) or smaller(S) or unchanged(UC)?; In front...

  • please answer all parts of the question: 1.An object is placed 21.3 cm to the left...

    please answer all parts of the question: 1.An object is placed 21.3 cm to the left of a diverging lens (f = -9.51 cm). A concave mirror (f = 10.6 cm) is placed 30.8 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with...

  • A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal...

    A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal length 8.20 cm. A diverging lens of focal length - 16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image. position cm height cm Is the image inverted or upright? O upright inverted Is the image real or virtual? Oreal virtual

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT