Question

In the system shown below, the block M (mass 5.65 kg) is pushed so that it is initially moving to the left with a speed of vo 1.75 m/s The hanging weight m hass a mass of 2.86 kg and the coefficients of friction are μ,-0.411 and μ,-0.304. The string and the pulley have negligible mass. How fast will M be traveling when m has fallen through a height h = 0.47 meters?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given

From work energy theorem

initial energy

Ei = m*g*h + (1/2)*M*vo^2 + (1/2)*m*v0^2

work done = -uk*M*g*L

final energy Ef = (1/2)*m*v^2 + (1/2)*M*v^2


Wf = Ef - Ei

-0.304*5.65*9.8*0.47 = (0.5*(2.86+5.64)*v^2) - (2.86*9.8*0.47) - (0.5*(5.65+2.86)*1.75^2)


v = 2.07 m/s

Add a comment
Know the answer?
Add Answer to:
In the system shown below, the block M (mass 5.65 kg) is pushed so that it...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the system shown below, there is a block of mass M = 3.6 kg resting...

    In the system shown below, there is a block of mass M = 3.6 kg resting on a horizontal ledge. The coefficient of kinetic friction between the ledge and the block is 0.25. The block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging block of mass m = 2.2 kg. The pulley is a uniform disk of radius 7.9 cm and mass 0.66 kg. Find the...

  • The system shown in the figure below consists of a mass M = 3.3-kg block resting...

    The system shown in the figure below consists of a mass M = 3.3-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging m = 1.7-kg block. The pulley is a uniform disk of radius 8.0 cm and mass 0.60 kg. (a) What is the acceleration of each block? acceleration of M = 3.3 kg _____ m/s2 acceleration...

  • A block of mass m1 = 39 kg on a horizontalsurface is connected to a...

    A block of mass m1 = 39 kg on a horizontal surface is connected to a mass m2 = 22.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction betweenm1 and the horizontal surface is 0.23.A) What is the magnitude of the acceleration (in m/s2) of the hanging mass?B) Determine the magnitude of the tension (in N) in...

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

  • Figure shows a block of mass m resting on a 20? slope. The block has coefficients...

    Figure shows a block of mass m resting on a 20? slope. The block has coefficients of friction 0.82 and 0.49 with the surface. It is connected via a massless string over a massless, frictionless pulley to a hanging block of mass 2.0 kg. What is the minimum mass m that will stick and not slip? If this minimum mass is nudged ever so slightly, it will start being pulled up the incline. What acceleration will it have?

  • Figure shows a block of mass m resting on a 20? slope. The block has coefficients...

    Figure shows a block of mass m resting on a 20? slope. The block has coefficients of friction 0.77 and 0.46 with the surface. It is connected via a massless string over a massless, frictionless pulley to a hanging block of mass 2.0 kg. What is the minimum mass m that will stick and not slip? If this minimum mass is nudged ever so slightly, it will start being pulled up the incline. What acceleration will it have?

  • hello I need help with this problem 1) The figure shows a block of mass m...

    hello I need help with this problem 1) The figure shows a block of mass m resting on a 20° slope. The block has coefficients of friction is = 0.64 and 4k = 0.54 with the surface of the slope. It is connected using a very light string over an ideal pulley to a hanging block of mass 2.0 kg. The string above the slope pulls parallel to the surface. What is the minimum mass m so the system will...

  • Please help, I dont understand this... A block of mass m1 = 34 kg on a...

    Please help, I dont understand this... A block of mass m1 = 34 kg on a horizontal surface is connected to a mass m2 = 16.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.23. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? (b)...

  • A block of mass m2 = 38 kg on a horizontal surface is connected to a...

    A block of mass m2 = 38 kg on a horizontal surface is connected to a mass m2 = 20.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m, and the horizontal surface is 0.24. m (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? 3.39 Did you draw a free-body...

  • Block A has a mass of 2.87 kg and block B has mass 1.98 kg. Block...

    Block A has a mass of 2.87 kg and block B has mass 1.98 kg. Block B is at the height ℎ = 1.50 m when the blocks are released from rest. Determine the speed of block B just before it bumps into the ground: (a) if block A slides frictionlessly along its horizontal planet; and (b) if the sliding friction number between block A and the ground is 0.18. (Assume that the string and pulley have negligible masses and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT