Question

1. (15 points) Assume that you have an adiabatic compressor with R-134a as the working fluid. The inlet fluid is a saturated

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Power = 13.387 kW

2 1 interpolate indespolare internal energy P2 2 8ookpa R134a Q = 3m3/min 0.05 m²/ P, = 180kPa (saturated vaporun, atincet) f260 $2 0.93965 -0.9183 0.9480 -0.9183 U2-246.79 - 7 7 254.82 - 246.79 1 UAOL Ssat Usat Skool 42= 252.562 KJ/kg mass flow rate

Add a comment
Know the answer?
Add Answer to:
1. (15 points) Assume that you have an adiabatic compressor with R-134a as the working fluid....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (33%) An insulated compressor is used in an air conditioner that uses R-134a as the working fluid...

    (33%) An insulated compressor is used in an air conditioner that uses R-134a as the working fluid. The R-134a enters °C. The mass flow rate of the R-134a through the compressor is 0.1 kg/s. Determine the following: the compressor as a saturated vapor at 4 °C and exits at 10 bar, 70 1-a) The compressor inlet pressure in bar 1-b) The compressor work per unit mass in kJ/kg. 1-c) The compressor power requirement in kW. (33%) An insulated compressor is...

  • 1 MPa Isentropic Efficiency of a Compressor Refrigerant-134a enters an adiabatic compressor as a saturated vapor...

    1 MPa Isentropic Efficiency of a Compressor Refrigerant-134a enters an adiabatic compressor as a saturated vapor at 100kPa at a rate of 0.7 m/min and exits at 1-MPa pressure. The isentropic efficiency of the compressor is 87%. R-134a Compressor Isentropic Compressor Work hs-h 100 kPa sat. vapor Actual Compressor Work Determine the refrigerant properties at the inlet and outlet for an isentropic process. Actual 2s entropic procEss Inlet state Determine the actual isentropic enthalpy from the efficiency. (Ans: 289.71 J/kg)...

  • 6. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of...

    6. Refrigerant-134a enters an adiabatic compressor as saturated vapor at 100 kPa at a rate of 0.7 m3/min and exits at 1 MPa pressure. If the isentropic efficiency of the compressor is 87%, determine (a) the temperature of the refrigerant at the exit of the compressor, (b) the power input (in kW), and (c) the rate of entropy generation during this process.

  • A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid....

    A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid. The system operates the evaporator at 0.4 MPa, the condenser at 1.6 MPa, and the separator at 0.8 MPa. The compressors use 25 kW of power. Given that the refrigerant is saturated liquid at the inlet of each expansion valve and saturated vapor at the inlet of each compressor, and the compressors are isentropic: (0) show the process on a T-s diagram; ) calculate...

  • A compressor of a heat pump with refrigerant-134a as the working fluid consumes 2.3 kW of...

    A compressor of a heat pump with refrigerant-134a as the working fluid consumes 2.3 kW of power is used to keep a space at 25°C by absorbing heat from geothermal water that enters the evaporator at 60°C at a rate of 0.065 kg/s and leaves at 50°C. Refrigerant ententhe evaporator at 30Cwithaqualityof 15 percent and leaves atthe same pressure as saturated vapor. determine the mass flow rate of the refrigerant

  • An ideal vapor-compression refrigeration cycle with R-134a as the working fluid has an evaporator temperature of-15...

    An ideal vapor-compression refrigeration cycle with R-134a as the working fluid has an evaporator temperature of-15 °C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3.5 kg/min. Draw and label the cycle on a T-s diagram. What is the coefficient of performance? Ans. 2.98 What is the refrigerating capacity in tons? a. b. c.

  • 1) A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated...

    1) A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30°C by rejecting its waste heat to cooling water that enters the condenser at 16 °C at a rate of 0.25 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and -34°C and the compressor is estimated to gain a net heat of...

  • A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid....

    A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid. the system operates the evaporator at 0.4Mpa, the condenser at 1.6Mpa and the separator at 0.8 Mpa. The compressors use 25kW of power. Given that the refrigerant is saturated liquid at the inlet of each compressor, and the compressors are isentropic: i) show the process on a T-s diagram, ii) calculate the rate of cooling provided by the evaporator, the COP of the heat...

  • Problem I: Not applicable for 2017 Problem II: In an R-134a vapor-compression home heat pump, R-134A...

    Problem I: Not applicable for 2017 Problem II: In an R-134a vapor-compression home heat pump, R-134A enters the compressor (75% isentropic efficiency) as a saturated vapor at 200 kPa and leaves at 800 kPa. The refrigerant goes through a constant pressure condenser and leaves as a saturated liquid. The refrigerant then goes through an adiabatic expansion valve enters the evaporator as a liquid-vapor mixture. The mass flow rate of refrigerant is 0.1 kg/s. and Cod A. Write the equation for...

  • An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid....

    An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at -10°C, and saturated liquid leaves the condenser at 28°C. The mass flow rate of refrigerant is 5 kg/min. Determine (a) The compressor power, in kW (b) The refrigerating capacity, in tons. (c) The coefficient of performance. Sketch the system on a T-s diagram with full label. A vapor-compression heat pump with a heating capacity of 500 kJ/min is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT