Question

A thin converging lens of focal length 21 cm is located at the origin and its axis lies on the x axis. A point source of red

0 0
Add a comment Improve this question Transcribed image text
Answer #1


object distance u= - 33 cm focal length f=21cm image distance v - - = 12 + ži V= 57.75 cm. height of objedho = 1 cm height of

Add a comment
Know the answer?
Add Answer to:
A thin converging lens of focal length 21 cm is located at the origin and its...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A converging lens has a focal length of 7.5 cm. An object is placed 5 cm...

    A converging lens has a focal length of 7.5 cm. An object is placed 5 cm from the lens. a. Draw the rays tracing diagram to locate the image. Is the image real or virtual? b. Calculate the location and the magnification for this image.

  • (2) An object is located at a distance of 4 cm from a thin converging lens...

    (2) An object is located at a distance of 4 cm from a thin converging lens with focal length of 2 cm. A diverging lens is located 3 cm from the converging lens and 7 cm from the object. The diverging lens has a focal length of -2 cm. Use the thin lens equation to predict the following (a) Location of the final image? to the object? (c) Is the final image real or virtual?

  • 2. A thin converging lens has a focal length of 10.0 cm. An object is placed...

    2. A thin converging lens has a focal length of 10.0 cm. An object is placed 30.0 cm from this lens. Use a sheet of the graph paper provided at the back of this manual to draw a ray diagram that shows the image formed by this lens. Use any two of the three principal (or special) rays and an appropriate scale. Hint: you could let 1 cm on your ray diagram represent 5 cm of the actual measurements:this scale...

  • A diverging lens with a focal length of -19.8 cm and a converging lens with a...

    A diverging lens with a focal length of -19.8 cm and a converging lens with a focal length of 17.9 cm have a common central axis. Their separation is 37.3 cm. An object of height 1.0 cm is 28.2 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? Submit Answer Tries...

  • An object is on the left side of a thin converging lens. The object is located...

    An object is on the left side of a thin converging lens. The object is located at a distance of 6 cm away from a thin converging lens with focal length of 2 cm. Use the thin lens equation (1/f = 1/s' + 1/s) to predict the following: (a) Location of the image? (b) Magnification of the image (including inverted versus non-inverted)? (c) Real or virtual? Draw diagram please!

  • A converging lens with a focal length of 4.9 cm is located 20.9 cm to the...

    A converging lens with a focal length of 4.9 cm is located 20.9 cm to the left of a diverging lens having a focal length of -11.0 cm. If an object is located 9.9 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. a) Where is the image located as measured from the diverging lens? b) What is the magnification? c) Also determine, with respect to the original object...

  • 2. A thin converging lens has a focal length of 10.0 cm. An object is placed...

    2. A thin converging lens has a focal length of 10.0 cm. An object is placed 30.0 cm from this lens. Use a sheet of the graph paper provided at the back of this manual to draw a ray diagram that shows the image formed by this lens. Use any two of the three principal (or special) rays and an appropriate scale. Hint: you could let I cm on your ray diagram represent 5 cm of the actual measurements:this scale...

  • A 5.00-cm tall candle is placed 50.0 cm to the left of a thin converging lens...

    A 5.00-cm tall candle is placed 50.0 cm to the left of a thin converging lens that has a focal length of 15.0 cm. To the right of the lens, 30.0cm away, another converging lens (focal length 20.0cm) is placed. Determine type (real/virtual), orientation (upright/inverted), location (with respect to the second lens) and height of the final image formed by the light as it passes through both lenses.

  • A 5.00-cm tall candle is placed 50.0 cm to the left of a thin converging lens...

    A 5.00-cm tall candle is placed 50.0 cm to the left of a thin converging lens that has a focal length of 15.0 cm. To the right of the lens, 30.0cm away, another converging lens (focal length 20.0cm) is placed. Determine type (real/virtual), orientation (upright/inverted), location (with respect to the second lens) and height of the final image formed by the light as it passes through both lenses.

  • An object is located at a distance of 6 cm from a thin converging lens with...

    An object is located at a distance of 6 cm from a thin converging lens with focal length of 2 cm. A diverging lens is located 4 cm from the converging lens and 10 cm from the object. The diverging lens has a focal length of -3 cm. Note: To handle a multiple lens system, we treat them independently. We first find the image created by the first lens. We then use the image from the first lens to act...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT