Question

20 Points 3) The bar is loaded with a force 15,000 N. Determine the safety factor for AISI 1050, annealed steel S u-636.0 MPa (92.3 ksi). Sy-365.4 MPa 2.5 na F 15,000 N 100 mm 15 mm radius

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
20 Points 3) The bar is loaded with a force 15,000 N. Determine the safety factor...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. This problem illustrate that the factor of safety for a machine element depends on the...

    4. This problem illustrate that the factor of safety for a machine element depends on the particular point selected for analysis. Compute factors of safety, based upon the distortion energy theory, for stress elements A and B of the member shown in the figure. This bar is made of AISI 1015 Cold-Drawn Steel and is loaded by the forces F = 6000 N, P = 5000 N, and T = 20 Nm. (5 points) 15-mm

  • 4. The following structure is made of AISI 1006 cold-drawn steel (Sy=280MPa) and it is loaded...

    4. The following structure is made of AISI 1006 cold-drawn steel (Sy=280MPa) and it is loaded by the forces F=0.55 kN, P=8.0 kN and T=30 Nm. The factor of safety for a machine element depends on the particular point selected for the analysis. Using Tresca failure theory, determine the factor of safety for points A and B. 15 points -100 mm 20-mm D.

  • The cantilever bar in the figure is made from AISI 1018 CD steel and is statically loaded

    The cantilever bar in the figure is made from AISI 1018 CD steel and is statically loaded with Fy = 800 N, and Fx = Fz = 0. The fillet radius at the wall is 2 mm with theoretical stress concentrations of 1.5 for bending, 1.2 for axial, and 2.1 for torsion.Sut = 440 MPa = 64 kpsi, Sy = 370 MPa = 54 kpsi. Analyze the stress situation in rod AB by obtaining the following information.a) Determine the precise...

  • The bar is made of mild steel (Sy =245 MPa) and is loaded by the forces...

    The bar is made of mild steel (Sy =245 MPa) and is loaded by the forces Fx = 300 N, F, = 450 N, F2 = 300 N, and Mx = 55 N m. - 100 mm (A) Find the principal stresses and the max shear stress at A of the member. (B) Compute the von Mises stress at A. TINTI (C) Compute the factors of safety of the member using the distortion-energy (DE) and maximum-shear-stress (MSS) theories. 15-mm D....

  • 6. A cantilever is loaded as shown in figure. Using a factor of safety of 2,...

    6. A cantilever is loaded as shown in figure. Using a factor of safety of 2, determine whether failure occurs according to the maximum energy of distortion theory. Use Cold-drawn AISI 1020 steel. Given: n = 2, k = 13.4 • 106 mm4 - 0. 4m 0 0kN 10.3 10.3 mm 10 80 mm 6.6 mm

  • 5-36 This problem illustrates that the factor of safety for a machine element depends on the...

    5-36 This problem illustrates that the factor of safety for a machine element depends on the particular point selected for analysis. Here you are to compute factors of safety, based upon the distortion- energy theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces F = 0.55 kN, P = 4.0 kN, and T = 25 N·m. -100 mm- Problem...

  • This problem illustrates that the factor of safety for a machine element depends on the particular...

    This problem illustrates that the factor of safety for a machine element depends on the particular point selected for analysis. Here you are to compute factors of safety, based upon the distortion-energy theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI 1006 cold-drawn steel and is loaded by the forces F=0.55kN, P=4kN, and T=25N·m. Given: Sy=280MPa.NOTE: This is a multi-part question. Once an answer is submitted, you will...

  • Design Problem: : (20 marks) Flr a safety factor of 2, find the safe load that...

    Design Problem: : (20 marks) Flr a safety factor of 2, find the safe load that the AISI 1020 beam, fixed at both ends (1o mm widex mm deep and span 2m) can carry: 180 (1) by elastic analysis, with the factor of safety based on yield, and, (2) by plastic design. (note: AISI 1020 Steel: yield stress 250 MPa, )

  • A flat bar (thickness b = 10 mm) with a shoulder fillet is loaded by a...

    A flat bar (thickness b = 10 mm) with a shoulder fillet is loaded by a cyclic force F-10-2013 shown below. The bar is made of alloy steel (S. = 900 MPa, S, - 700 MPa) and has dimensions of 35 mm, H = 50 mm, r = 4 mm and I = 80 mm. The actual fatigue strength of the component is estimated as S = 360 MPa for commercially polished surface conditions. The bar should be safe against...

  • For the shaft shown in figure 1, made of AISI steel 1030 CD with Sut =...

    For the shaft shown in figure 1, made of AISI steel 1030 CD with Sut = 520 MPa and Sy = 440 MPa., determine the factor of safety based on failure theories for ductile of Maximum Shear Stress and Distortion Energy (Von Misses). The point selected for analysis is determined form the following table. The loads are F= 2.13 kN, P= 5.13 kN, and T = 31.3 N. m. 100 mm B 15-mm D. Р T

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT