Question

3. A block of mass M oscillates with amplitude A on a frictionless horizontal table, connected to an ideal spring of force constant k. The period of its oscillations is T. At the moment when the block is at position x-A and moving to the right, a ball of clay of mass m dropped from above lands on the block : k (a)What is the velocity of the block just before the clay hits? b) What is the velocity of the block just after the clay hits? c) What is the new period of the oscillations of the block d) What is the new amplitude of the oscillations? Write your answer in terms of A, R, M, and m (e) Would the answer to part (c) be different if the clay had landed on the block when it was at a different position? Support your answer briefly Would the answer to part (d) be different if the clay had landed on the block when it was at a different position? Support your answer briefly.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ballanc erthen cloy hits bi.cih a einatic eno M+rn en cte се meo Time perio new auwplitude A enu es anme aA tal eme no anplid

Add a comment
Know the answer?
Add Answer to:
3. A block of mass M oscillates with amplitude A on a frictionless horizontal table, connected...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The oth...

    A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall. A second block with mass m rests on top of the first block. The coefficient of static friction between the a blocks is μs. a) Find the maximum amplitude of oscillation such that the top block will not slip on the bottom block. b) Suppose the coefficient of...

  • A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6390 N/m. A bullet of mass m = 8.20 g and velocity of magnitude 710 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b) the...

  • A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 5890 N/m. A bullet of mass m = 9.30 g and velocity v of magnitude 650 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible is embedded, determine (a) the speed of the block immediately after the collision and (b) the amplitude of...

  • A block of mass M = 1.94 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 1.94 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 110 N/m. A bullet of mass m = 4.7 g and velocity of magnitude 810 m/s strikes and is embedded in the block (Fig. See below). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b)...

  • A block of mass M = 6.20 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 6.20 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6410 N/m. A bullet of mass m = 9.30 g and velocity v→ of magnitude 600 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b)...

  • A 456 g mass oscillates with an amplitude of 12.8 cm in simple harmonic oscillation connected...

    A 456 g mass oscillates with an amplitude of 12.8 cm in simple harmonic oscillation connected to a spring of spring constant k . The system is known to have a maximum velocity of 0.575 m/s as it oscillates back and forth. What is the spring constant of the oscillation? What is the period of the oscillation? What is the total energy of the system?

  • A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is...

    A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 5490 N/m. A bullet of mass m = 9.90 g and velocity v of magnitude 670 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b)...

  • 1. A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface....

    1. A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. The spring constant is 280N/m. The block-spring system undergoes simple harmonic motion. At a time t=0s, the position of the block x= +A and its velocity vx= 0. At t=2.50s the position x = -12.0 cm No credit awarded without correct units! a. Determine the angular frequency and period of the motion b. Determine the amplitude c. Determine the phase angle d. Write the...

  • In the figure, block 2 of mass 2.60 kg oscillates on the end of a spring...

    In the figure, block 2 of mass 2.60 kg oscillates on the end of a spring in SHM with a period of 24.00 ms. The position of the block is given by x = (1.60 cm) cos(wt + pi/2). Block 1 of mass 5.20 kg slides toward block 2 with a velocity of magnitude 7.20 m/s, directed along the spring's length. The two blocks undergo a completely inelastic collision at time t = 6.00 ms. (The duration of the collision...

  • 4. (12 pts) A block of mass, M, rests on a horizontal, frictionless surface and is...

    4. (12 pts) A block of mass, M, rests on a horizontal, frictionless surface and is attached to a spring with a spring constant ofk-85.0 N/m as shown. The block is pulled back a distance d-0.250 m from equilibrium and released. The block completes 8 complete oscillations in 10.0 s. Equilibrium a). (4 pts) what is the magnitude of the force exerted on the block by the spring just before it is released? Answer: b). (4 pts) Once the block...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT