Question

d) What is the relation between the highest pressure and temperature of the fuel air cycle with the compression ratio of the cycle?
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Fuel At cqcle rt defred ae the theore tçcol cycle that trased on the achuol pPro Per tter No change f) fuel fa chemical compokg 2 3

Add a comment
Know the answer?
Add Answer to:
d) What is the relation between the highest pressure and temperature of the fuel air cycle...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • he pressure and temperature at the beginning of compression of a cold air-standard Diesel cycle are...

    he pressure and temperature at the beginning of compression of a cold air-standard Diesel cycle are 100 kPa and 300 K, respectively. At the end of the heat addition, the pressure is 7.2 MPa and the temperature is 2250 K. Assume constant specific heats evaluated at 300 K. Determine: (a) the compression ratio. (b) the cutoff ratio. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.

  • Temperature and pressure at the beginning of the compression process of an air-standard Otto cycle are...

    Temperature and pressure at the beginning of the compression process of an air-standard Otto cycle are 295 K and 100 kPa, respectively. The compression ratio is 10 and the maximum temperature during the cycle is 2200 K. Draw P-v and T-s diagrams of the cycle and determine: a) The net work in kJ/kg. b) The thermal efficiency. c) The mean effective pressure, in kPa. Assume R = 287 J/kg.K for air.

  • At the beginning of the compression process of an air standard Diesel cycle, the pressure is 109 ...

    At the beginning of the compression process of an air standard Diesel cycle, the pressure is 109 kPa and the temperature is 284 K. The volume of state 1 is 800.0 cm3. The compression ratio for the Diesel cycle is 12 and cut-off-ratio is 1.95. Determine: a) the heat addition, in kJ kJ b) the net work, in kJ kJ c) the thermal efficiency % d) the mean effective pressure, in kPa kPa At the beginning of the compression process...

  • In an Otto cycle air is compressed from an initial pressure 120 kPa and temperature 370...

    In an Otto cycle air is compressed from an initial pressure 120 kPa and temperature 370 T (K). The cycle has compression ratio of 10. In the constant volume heat addition process 1000 kJ/kg heat is added into the air. Considering variation on the specific heat of air with temperature, determine, (a) the pressure and temperature at the end of heat addition process (show the points on P-v diagram) (b) the network output (c) the thermal efficiency (d) the mean...

  • Problem (3) The compression ratio of an air-standard Otto cycle is 8. At the beginning of...

    Problem (3) The compression ratio of an air-standard Otto cycle is 8. At the beginning of compression process, the air is at 100 KPa, and 17 °C. 800 kJ/kg of heat is transferred to the air during the constant volume heat addition process. Determine: (a) The highest temperature in the cycle. (b) The highest pressure in the cycle. (c) The net work. (d) The thermal efficiency of the cycle.

  • Pressure ratio of a Brayton cycle with air operated regenerator 8. The lowest and highest temperatures...

    Pressure ratio of a Brayton cycle with air operated regenerator 8. The lowest and highest temperatures of the cycle are 310 K and 1150 K. Adiabatic efficiency of compressor and turbine 75% and 82%, respectively. the efficiency of the regenerator is 65%. The cycle in the T-s diagram Show. Consider the variation of specific temperatures with temperature. a) the temperature of the air at the turbine outlet, b) Net work of the cycle, c) Calculate the thermal efficiency of the...

  • 15. An air-standard, ideal gas cycle with limited-pressure combustion is used to evaluate an idea...

    15. An air-standard, ideal gas cycle with limited-pressure combustion is used to evaluate an ideal compression ignition engine. The compression ratio is 12. The maximum temperature in the cycle is 2040 °F. The minimum temperature and pressure in the cycle is 40 OF and 20 psia, respectively. The coefficient β=1.2 (β is the ratio of the volume after to the volume before the constant pressure heat input process). Calculate the heat added during combustion per lbm of air, and the...

  • Diesel Cycle a. The pressure and temperature at each state in this cycle. b. The compression ratio. c. The cutoff ratio. d. The thermal efficiency. e. The MEP (mean effective pressure.) Consider an a...

    Diesel Cycle a. The pressure and temperature at each state in this cycle. b. The compression ratio. c. The cutoff ratio. d. The thermal efficiency. e. The MEP (mean effective pressure.) Consider an air-standard Diesel cycle (this means use variable specific heats). The inlet state to the compression process is at 95 kPa and 300 K. At the end of the heat addition process, the temperature is 2150 K and the pressure is 7200 kPa. Accounting for the variation of...

  • Please find the correct option.(A-B-C-D) In an ideal air-powered Diesel cycle, the air pressure at the...

    Please find the correct option.(A-B-C-D) In an ideal air-powered Diesel cycle, the air pressure at the start of the compression process is 0.1 MPa, the temperature is 27 degrees Celsius, and at the end of the compression process its temperature is 680 degrees Celsius. d. The maximum temperature of the cycle is 1700 degrees Celsius. Fixed specific temperatures will be used at room temperature. What is the thermal efficiency for the specified diesel conversion? A-) %52 B-) %72 C-) %62...

  • An air standard Carnot cycle is executed in a closed system between the temperature limits of...

    An air standard Carnot cycle is executed in a closed system between the temperature limits of 350 K and 1200 K. The pressure before and after the isothermal compression are 150 kPa and 300 kPa respectively. The net work output per cycle is 0.7 kJ . Use the IG model for air. Determine the maximum pressure in the cycle. Determine the heat transfer to air. Determine the mass of air.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT