Question

In an Otto cycle air is compressed from an initial pressure 120 kPa and temperature 370...

In an Otto cycle air is compressed from an initial pressure 120 kPa and temperature 370 T (K). The cycle has compression ratio of 10. In the constant volume heat addition process 1000 kJ/kg heat is added into the air. Considering variation on the specific heat of air with temperature, determine,

(a) the pressure and temperature at the end of heat addition process (show the points on P-v diagram)

(b) the network output

(c) the thermal efficiency

(d) the mean effective pressure for the cycle.

The gas constant of air is R = 0.287 kJ/kg.K

(Describe the necessary assumptions you have considered in your solutions.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Please thumbs up to appreciate our efforts If you have any doubt regarding this answer, please tell me. I'll be delightful to answer.

Answer: Given: Oto Cycle Ti = 370 k EP - 120 kPa To compression Ratio - 10 Q = heat addition at constant = 1000 ko voheme kgP4 3 Tig: p-v diagram of otto cycle 2 1 y h =1.4 (for air) т. (10joy Te = 929.39K 370 Livi= const P2 es const a - Constant Ra in terms By putting the function of of tempt and integrating the equation o can find the numerical value of tempt h = Temp.Mothermal output work Head added o output woek Loox 0.6018 atput work = 601-8913 Kg (c) Thermal efficiency an thermal thermal

Add a comment
Know the answer?
Add Answer to:
In an Otto cycle air is compressed from an initial pressure 120 kPa and temperature 370...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of...

    Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27 and 720 kJ/kg of heat is transferred to air during the constant volume heat addition process. Take into account the variation of specific heats with temperature. The gas constant of air is R=0.287 kJ/kg.K. Determine the network output (You must provide an answer before moving on to the next part.) The net work output...

  • Temperature and pressure at the beginning of the compression process of an air-standard Otto cycle are...

    Temperature and pressure at the beginning of the compression process of an air-standard Otto cycle are 295 K and 100 kPa, respectively. The compression ratio is 10 and the maximum temperature during the cycle is 2200 K. Draw P-v and T-s diagrams of the cycle and determine: a) The net work in kJ/kg. b) The thermal efficiency. c) The mean effective pressure, in kPa. Assume R = 287 J/kg.K for air.

  • An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression...

    An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression process, air is at 95 kPa and 27-degree C, and 750 kJ/kg of heat is to air during the constant-volume heat-addition process. Considering the variation of specific heats with temperature (Table A-17), determine (a) the pressure and temperature at the end of the heat addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the...

  • An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression...

    An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression process, air is at 100 kPa and 17°C, and 900 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle .

  • 5) Otto Cycle In this problem, you will analyze the performance of an air-standard Otto cycle for...

    5) Otto Cycle In this problem, you will analyze the performance of an air-standard Otto cycle for two cases: 1) variable specific heats of air and 2) constant specific heats of air evaluated at 300 K. The following information is given for the cycle: .The pressure and temperature, respectively, are 100 kPa and 300 K at the beginning of compressionn The compression ratio is 9 . The heat addition per unit mass of air is 1350 kJ/kg For each case,...

  • Q3. An ideal Otto cycle has a compression ratio of 8. At the beginning of the...

    Q3. An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 278C, and 750 kJ/kg of heat is transferred to air during the constant- volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat- addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for...

  • (12 points) An ideal Otto cycle operates with a compression ratio of 10. At the beginning...

    (12 points) An ideal Otto cycle operates with a compression ratio of 10. At the beginning of the compression process, the air is at 101 kPa and 27°C. During the constant volume heat addition process, 790 kJ/kg of heat is transferred to the air. Accounting for variable specific heats with temperature, determine: the maximum temperature during the cycle 1266.862 °C the maximum pressure during the cycle 6239.424 kPa the specific net work output 475.495481 kJ/kg the mean effective pressure (MEP)...

  • 4. A4.6 L spark ignition engine operates on the ideal Otto cycle with a compression ratio of 10. At the beginning of the compression process the air is at 107 kPa and 21 C. The maximum cycle temp...

    4. A4.6 L spark ignition engine operates on the ideal Otto cycle with a compression ratio of 10. At the beginning of the compression process the air is at 107 kPa and 21 C. The maximum cycle temperature is 1116°C. Accounting for variable specific heats, determine: (a) the heat addition per cycle in kJ. Ans: 3.368 kJ (b) the net work per cycle in kJ. Ans: 1.907 kJ (c) the mean effective pressure in kPa. Ans: 460.6 kPa (d) the...

  • Problem (3) The compression ratio of an air-standard Otto cycle is 8. At the beginning of...

    Problem (3) The compression ratio of an air-standard Otto cycle is 8. At the beginning of compression process, the air is at 100 KPa, and 17 °C. 800 kJ/kg of heat is transferred to the air during the constant volume heat addition process. Determine: (a) The highest temperature in the cycle. (b) The highest pressure in the cycle. (c) The net work. (d) The thermal efficiency of the cycle.

  • An Otto cycle has a compression ratio of 8. At the beginning of the compression process,...

    An Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C and 750 kJ/kg of heat is transferred to the air during the heat addition process. Accounting for the variation of specific heats with temperature, determine: a) the temperature [K] and pressure [kPa] after the compression process; b) the temperature [K] and pressure [kPa] after the heat addition process; c) the net power output [kJ/kg]; d) the thermal...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT