Question

1) A Rankine cycle operates between pressures P2 and Pi with a maximum temperature T3. (a) Calculate the thermal efficiency o

0 0
Add a comment Improve this question Transcribed image text
Answer #1

State3 20M803444ー25 45 LAnet F14 1.36 0.2554 Os348.55 tr) - 2ine t .2+启9.55 eo?- 4 65 2126* Tdeal Cycle 2 3M舸 Rel oyou

Add a comment
Know the answer?
Add Answer to:
1) A Rankine cycle operates between pressures P2 and Pi with a maximum temperature T3. (a)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (1) Ideal Rankine A power plant operates using an ideal Rankine cycle. Saturated liquid water enters...

    (1) Ideal Rankine A power plant operates using an ideal Rankine cycle. Saturated liquid water enters the pump at P1 = 25 kPa. After being pumped, it passes through the boiler before entering the turbine at P3 = 5 MPa and T3 = 500 °C. If the mass flowrate of the working fluid is m = 20 kg/s, what are Wnet, Oh, and ntn? Draw this on a T-s diagram, labeling the given pressures and temperature as well as arrows...

  • Question 3 [30 marks] A reheat Rankine cycle is designed for a steam power plant. Steam...

    Question 3 [30 marks] A reheat Rankine cycle is designed for a steam power plant. Steam enters both the high- and low- pressure turbines at 600oC. The maximum and minimum pressures of the cycle are 20 MPa and 20 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The...

  • A simple Ideal Brayton cycle operates with air with minimum and maximum temperatures of 27C and...

    A simple Ideal Brayton cycle operates with air with minimum and maximum temperatures of 27C and 727°C. It is designed so that the. maximum cycle pressure is 2000 kPa and the minimum cycle pressure is 100 kPa. The isentropic efficiency of the turbine is 78 percent. Determine the network produced per unit mass of air each time this cycle is executed and the cycle's thermal efficiency Use constant specific heats at room temperature. The properties of air at room temperature...

  • A steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of...

    A steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of 5 MPa and 100 kPa. The temperature of the steam att the turbine is 500 C degree and the mass flow rate of steam through the cycle is 35 kg/s. a) Determine the thermal efficiency of the cycle. b) determine the net power output of the power plant ( Assume both the turbine and the pump have isentropic efficiency of 100%). c) Draw the...

  • Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...

    Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Assume an isentropic efficiency of 85 percent for both the turbine and the pump. (a) the quality of the steam at the turbine exit (b) the thermal efficiency of the cycle (c) the mass flow rate of the steam.

  • Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the...

    Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the next page), where the boiler pressure is 3 MPa and the condenser saturation temperature is 50°C. The temperature at the exit of the boiler is 500°C. Water leaves the condenser as a saturated liquid. The mass flow rate through each component is 15 kg/s. Calculate: 1. The power output of the steam power plant 2. The thermal efficiency of the steam power plant Now,...

  • A power plant using a Rankine power generation cycle and steam operates at a temperature of...

    A power plant using a Rankine power generation cycle and steam operates at a temperature of 80 oC in the condenser, a pressure of 2.5 MPa in the boiler, and a maximum boiler temperature of 700 oC. Draw the two cycles described below on a temperature-entropy diagram for steam, and answer the following questions. a) What is the efficiency of this power plant, assuming the pump and turbine operate adiabatically and reversibly? What is the temperature of the steam leaving...

  • Problem 1 (40 pts): A power plant runs on a steam cycle that closely approximates a...

    Problem 1 (40 pts): A power plant runs on a steam cycle that closely approximates a Rankine cycle with one exception: the turbine is adiabatic but not isentropic, and has an isentropic efficiency of 85%. The cycle operates between 20 kPa and 20 MPa and steam achieves a maximum temperature of 600 °C. The cycle receives heat from a combustion chamber at 1500 K and rejects heat to the surrounding. a) Calculate the net work output and thermal efficiency of...

  • Q1. A steam power plant operates on a simple ideal Rankine cycle between the pressure limits...

    Q1. A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of 4 MPa and 50 kPa. The temperature of the steam at the turbine inlet is 300°C, and the mass flow rate of steam through the cycle is 35 kg/s. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the thermal efficiency of the cycle and (b) the net power output of the power plant. 02

  • Exam.1 Statement Ideal Rankine cycle operates between 10 kPa and 3 MPa. The steam enters the...

    Exam.1 Statement Ideal Rankine cycle operates between 10 kPa and 3 MPa. The steam enters the turbine as saturated vapor. STAGE 1 Calculate: specific input power, specific heat gain, specific tion. Finally find the specit net power output from the engine, thermal efficiency and check

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT