Question

in a lecture demonstration, a bar magnet is moved toward a 2,000 turn circular coil such that the magnetic field is perpendicular to the area inside of the coil and increases uniformly from 20.0mT to 130.0 mT in 0.250 s. The diameter of the turns is 15.0 cm and the entire coil has a resistance of 3.00 ohms. What is the current induced in the coil and how much energy is produced as Joule heat in the wire turns over the 0.250 second interval? (10 points) .

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Please rate if helpful

Add a comment
Know the answer?
Add Answer to:
in a lecture demonstration, a bar magnet is moved toward a 2,000 "turn" circular coil such...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1) A 179‑turn circular coil of radius 3.55 cm and negligible resistance is immersed in a...

    1) A 179‑turn circular coil of radius 3.55 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 13.7 Ω resistor to create a closed circuit. During a time interval of 0.121 s, the magnetic field strength decreases uniformly from 0.643 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval. energy: mJ 2) You decide...

  • A bar magnet is moved (in the plane of the page) with respect to a single-tur...

    A bar magnet is moved (in the plane of the page) with respect to a single-tur of radius 5.00 cm as shown (the coil lies in a plane perpendicular to the di of the bar magnet). Over a time interval of 0.150 s, the magnitude of the magnetic field at the coil varies from 0.640 T to 0.240 T. The resistance of coil is 2.50 Ohms. Assume that the magnetic field is uniform over the bounded by the coil. 4....

  • Quiz 1: Consider a circular loop with a 2.50-cm radius in a constant magnetic field of...

    Quiz 1: Consider a circular loop with a 2.50-cm radius in a constant magnetic field of 0.625 T. 1) Find the magnetic flux through this loop when its normal makes an angle of (a) 60.0°, and (b) 90.0°, with the direction of the magnetic field B. 2) Find the angle at which the magnetic flux is 1 * 10-*Tm. Quiz 2: A bar magnet is moved rapidly toward a 40-turn circular coil of wire. As the magnet moves, the average...

  • A permanent magnet is dropped south-end-down through a horizontal circular coil with a radius of 10...

    A permanent magnet is dropped south-end-down through a horizontal circular coil with a radius of 10 cm, having 200 turns, and a total resistance of 5π ohms. Find the magnitude and direction of the current induced in the coil when the magnet has passed through and the field through the coil is decreasing at 40 mT/s.

  • A bar magnet induces a current in an N-turn coil as the magnet moves closer to...

    A bar magnet induces a current in an N-turn coil as the magnet moves closer to it as shown in (Figure 1) . The coil's radius is R m, and the average induced emf across the bulb during the time interval is ? V. A. Find the rate of change of magnetic field Express your answer in terms of the variables ?, N, R, and appropriate constants. Part B Determine the induced current. Assume that R0 is the resistance of...

  • A 141 turn circular coil of radius 2.61 cm is immersed in a uniform magnetic field...

    A 141 turn circular coil of radius 2.61 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.177 s , the magnetic field strength increases from 53.1 mT to 96.9 mT . Find the magnitude of the average emf avg induced in the coil during this time interval, in millivolts. A 141 turn circular coil of radius 2.61 cm is immersed in a uniform magnetic field that is...

  • 1. A 85 turn elastic circular coil of wire initially has a radius of 74.2 cm...

    1. A 85 turn elastic circular coil of wire initially has a radius of 74.2 cm and is immersed in a uniform magnetic field with a strength of 0.495 T. At t 0, the coil is released and begins decreasing in radius at a constant rate of 7.22 cm/s. While it contracts, the number of turns does not change. a) Write the magnetic flux through a single turn of the coil as a function of time. (Hint: What causes the...

  • A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...

    A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.26 V and a current of 4.9 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are...

  • A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...

    A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.61 V and a current of 3.2 A are induced in the coil. The wire is the re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What emf and current are induced in...

  • A 123-turn circular coil of radius 2.35 cm is immersed in a uniform magnetic field that...

    A 123-turn circular coil of radius 2.35 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. During 0.197 s the magnetic field strength increases from 53.5 mT to 95.7 mT. Find the magnitude of the average EMF, in millivolts, that is induced in the coil during this time interval.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT