Question

For the transfer function: G(S) = 72 +3s +10 a. Find the 2% settling time and overshoot for a step input. b. Sketch the Bode

0 0
Add a comment Improve this question Transcribed image text
Answer #1

s25410 s+24 was thono tomparing and Solving with @ als)- ! denominator wn²= 1o W nasło rad/see/ and 28 wn= 3 3 3 = 20 = 0.47

B))

Bode plot: magnitude (dB) 10 phase (degrees) - 200 10 frequency Y(5) U(s)

Add a comment
Know the answer?
Add Answer to:
For the transfer function: G(S) = 72 +3s +10 a. Find the 2% settling time and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with ...

    A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G (s) =...

  • A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-...

    A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input; b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G)2)(s +5) is operating with...

  • For the closed-loop system shown, and given: C(s) 8.41 s+8.10 G(8 2 0.02 3.00 2out G(s) C(s) control plant Part A-Plant 1% settling time Find the 1% settling time of the plant G(s) to a unit step inp...

    For the closed-loop system shown, and given: C(s) 8.41 s+8.10 G(8 2 0.02 3.00 2out G(s) C(s) control plant Part A-Plant 1% settling time Find the 1% settling time of the plant G(s) to a unit step input. 15.38 t,3% - Submit X ncorrect; Try Again - Part B Plant: Overshoot Find the overshoot of the plant G(s)to a unit step input. Give your answer as a percentage Mp: | Value Units Submit Request Answer Part C - Closed-loop system:...

  • 1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in...

    1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in the forward path. (a) Design a proportional controller that yields a stable system with percent overshoot less that 5% for the step input (b) Find settling time and peak time of the closed-loop system designed in part (a); (c) Design a PD compensator that reduces the settling time computed in (b) by a factor of 4 while keeping the percent overshoot less that 5%...

  • Consider a system modelled by means of the following transfer function 10 G(s) s(s +1)(s +10)...

    Consider a system modelled by means of the following transfer function 10 G(s) s(s +1)(s +10) Given the standar negative feedback control structure, and the Bode plot of G(s): 1. Obtain (if possible) a lead compensator controller (C(s) Kc1+ts) that satisfies that the corresponding steady state error with respect to the ramp input is and that the overshoot is not greater than 15 per cent 2. Obtain (if possible) a lead compensator that satisfies that the correspond- ing steady state...

  • Problem 2. Using the LTI Viewer tool in MATLAB, find the peak response, percent overshoot, settling...

    Problem 2. Using the LTI Viewer tool in MATLAB, find the peak response, percent overshoot, settling time, rise time, and steady state of the step response of the system given with the closed loop transfer function: a) G(s)- (s + 3)(s2 + 3s + 20) , 12 b) G(s) = s +3s2+5s +5 3s2+5s+5 Hint: Type "ltiview" in command window of the MATLAB)

  • Problem 1: Hand sketch the Bode plot for the transfer function G(s) = 5–10 (1) If...

    Problem 1: Hand sketch the Bode plot for the transfer function G(s) = 5–10 (1) If Y(s) = G($)U(s), where U (s) = L (u(t)), what is lim+ y(t)? Problem 2: Hand sketch the Bode plot for the transfer function GS) = 52+ 10s + 900

  • 3. (28 pts.) The unity feedback system with K(5+3) G(s) = (s + 1)(s + 4)(s...

    3. (28 pts.) The unity feedback system with K(5+3) G(s) = (s + 1)(s + 4)(s + 10) is operating with 12% overshoot ({=0.56). (a) the root locus plot is below, find the settling time (b) find ko (c) using frequency response techniques, design a lead compensator that will yield a twofold improvement in K, and a twofold reduction in settling time while keeping the overshoot at 12%; the Bode plot is below using the margin command and using the...

  • Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed...

    Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed-loop step response that has 20.5% overshoot. G)-(+8)6 + 25) G(s) (a) Design a PD compens ator to decrease the settling time of the closed-loop system by a factor of four Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed-loop step response that has 20.5% overshoot. G)-(+8)6 + 25) G(s) (a) Design a PD compens ator to decrease...

  • find Consider the Transfer Function Shown Below: G(S) = (s +2) s(s + 3)(s + 5)2...

    find Consider the Transfer Function Shown Below: G(S) = (s +2) s(s + 3)(s + 5)2 a. Plot the magnitude and phase plots for each element of the above transfer function. (1 b. Plot the Bode magnitude and phase plots of the system in the given logarithmic paper. Use the plotted Bode plots to estimate the gain and phase margins of the system. (10 P d. Is the system stable or not? Explain why? (5 Pts) C.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT