Question

2. Consider the autonomous nonlinear system (such systems arise in competing species population models). (a) Find the equilib

0 0
Add a comment Improve this question Transcribed image text
Answer #1

T So, the equilltorum solutions are 10,0),(012), (200) and Chil) d= {(1-42-44) y= $ 11- 42 -zyby equilibrum solutions 7 / (At point(210) 123 12)-310) Julio) : | *(1-2-4(0) [ 72.ro) ¢ J1 2,0) = 1t ² Reformalus di- , d2 = 1/2 since dico ,d230. (2701

Add a comment
Know the answer?
Add Answer to:
2. Consider the autonomous nonlinear system (such systems arise in competing species population models). (a) Find...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4 Consider the autonomous differential equation y f(v) a) (3 points) Find all the equilibrium solutions (critical...

    4 Consider the autonomous differential equation y f(v) a) (3 points) Find all the equilibrium solutions (critical points). b) (3 points) Use the sign of y f(z) to determine where solutions are increasing / decreasing. Sketch several solution curves in each region determined by the critical points in c) (3 points) the ty-plane. d) (3 points) Classify each equilibrium point as asymptotically stable, unstable, or semi-stable and draw the corresponding phase line. 4 Consider the autonomous differential equation y f(v)...

  • 1. (10 points) Consider the autonomous equation dy = y2 + 3y + 2 dc (a)...

    1. (10 points) Consider the autonomous equation dy = y2 + 3y + 2 dc (a) (6 points) Determine the equilibrium solutions of the equation, and classify each as asymptotically stable or unstable. (b) (4 points) Sketch at least three solutions to the equation, choosing initial points not corresponding to the equilibrium solutions. Include the equilibrium solutions in your sketch.

  • 5. Consider the nonlinear two dimensional Lotka-Volterra (predator-prey) system z'(t) = z(t)[2-2(...

    5. Consider the nonlinear two dimensional Lotka-Volterra (predator-prey) system z'(t) = z(t)[2-2(t)-2y(t)l, y'(t) = y(t)12-y(t)--2(t)] (a) Find all critical points of this system, and at each determine whether or not the system is locally stable or unstable. (b) We proved in class, using the Bendixson-Dulac theorem, that this system has no periodic solution with trajectory in the first quadrant of the plane. Assuming this, use the Poincare-Bendixson theorem to prove that all trajectories (z(t),y(t)) of the system (2) with initial...

  • 2. Consider the nonlinear autonomous system of DEs: dx dt dy dt (a) Find all critical...

    2. Consider the nonlinear autonomous system of DEs: dx dt dy dt (a) Find all critical points of this system. (Make sure that you have found all of them.) (b) Find the linearization (a linear system) at each critical point. Calculate the eigen- values of the contant coefficient matrix, classify the corresponding critical point, and state its stability.

  • Consider the nonlinear second-order differential equation where k > 0 is a constant. Answer to the following questio...

    Consider the nonlinear second-order differential equation where k > 0 is a constant. Answer to the following questions (a) Derive a plane autonomous system from the given equation and find all the critical points (b) Classify(discriminate/categorize) all the critical points into one of the three cat- egories: {stable / saddle / unstable(not saddle)) (c) Show that there is no periodic solution in a simply connected region (Hint: Use the corollary to Theorem 11.5.1) Consider the nonlinear second-order differential equation where...

  • 5. Consider the system: dz 4y 1 dy (a) Are these species predator-prey or competing? b) What type of growth does species z exhibit in absence of species y? What type of growth does species y exhibit...

    5. Consider the system: dz 4y 1 dy (a) Are these species predator-prey or competing? b) What type of growth does species z exhibit in absence of species y? What type of growth does species y exhibit in absence of species r? (c) Find all critical (equilibrium) points d) Using the Jacobian matrix, classify (if possible) each critical (equilibrium) point as a stable node, a stable spiral point, an unstable node, an unstable spiral point, or a saddle point. (e)...

  • Consider the nonlinear second-order differential equation 4x"+4x'+2(k^2)(x^2)− 1/2 =0, where k > 0 is a const...

    Consider the nonlinear second-order differential equation 4x"+4x'+2(k^2)(x^2)− 1/2 =0, where k > 0 is a constant. Answer to the following questions. (a) Show that there is no periodic solution in a simply connected region R={(x,y) ∈ R2 | x <0}. (Hint: Use the corollary to Theorem 11.5.1>> If symply connected region R either contains no critical points of plane autonomous system or contains a single saddle point, then there are no periodic solutions. ) (b) Derive a plane autonomous system...

  • 5. Consider the nonlinear two dimensional Lotka-Volterra (predator-prey) system z'(t) = z(t)[2-2(t)-2y(t)l, y'(t) = y(t)12-y(t)--2(t)] (a)...

    5. Consider the nonlinear two dimensional Lotka-Volterra (predator-prey) system z'(t) = z(t)[2-2(t)-2y(t)l, y'(t) = y(t)12-y(t)--2(t)] (a) Find all critical points of this system, and at each determine whether or not the system is locally stable or unstable. (b) We proved in class, using the Bendixson-Dulac theorem, that this system has no periodic solution with trajectory in the first quadrant of the plane. Assuming this, use the Poincare-Bendixson theorem to prove that all trajectories (z(t),y(t)) of the system (2) with initial...

  • Consider the nonlinear second-order differential equation x4 3(x')2 + k2x2 - 1 = 0, _ where k > 0 is a constant....

    Consider the nonlinear second-order differential equation x4 3(x')2 + k2x2 - 1 = 0, _ where k > 0 is a constant. Answer to the following questions. (a) Derive a plane autonomous system from the given equation and find all the critical points (b) Classify(discriminate/categorize) all the critical points into one of the three cat- egories: stable / saddle unstable(not saddle)} (c) Show that there is no periodic solution in a simply connected region {(r, y) R2< 0} R =...

  • Consider the plane autonomous system 4) 2 X'=AX with A (a) Find two linearly independent real solutions of the syst...

    Consider the plane autonomous system 4) 2 X'=AX with A (a) Find two linearly independent real solutions of the system (b) Classify the stability (stable or unstable) and the type (center, node, saddle, or spiral) of the critical point (0,0). (c) Plot the phase portrait of the system containing a trajectory with direction as t-oo whose initial value is X(0) (0,6)7 and any other trajectory with direc- tion. (You do not need to draw solution curves explicitly.) Consider the plane...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT