Question

3 ft, 3 ft 3 ft Problem 3. The beam is supported by a pin at point B and a roller at point E. A distributed load q = 1 kip/ft is applied across AC, and a point load P = 5 kips and counter-clockwise moment M = 9 kips . ft are applied at point D. Determine the reactions at the supports, and draw the shear and bending moment diagrams.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

FA ydudu 2. 5.67kip 1. kip 5.2p67ip 2.33kip 2.33kip 3.00kip 0.00 1.00 5.00 6.00 8.00 9.00 10.00 11.00 13.00 14.00FA ydudu 1.00 5.00290.00° 1.00 7.00ip ft 2.33 8.67 8.00kipf 16.00kip-ft 5.00 6.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 1

Add a comment
Know the answer?
Add Answer to:
3 ft, 3 ft 3 ft Problem 3. The beam is supported by a pin at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • QUESTION 2 Beam ABCD is 8 m in length and is pin-supported at A and roller-supported...

    QUESTION 2 Beam ABCD is 8 m in length and is pin-supported at A and roller-supported at C as shown in Figure Q2. A counter-clockwise concentrated moment acts about the support A. A uniformly-distributed load acts on span BC and a vertical concentrated load acts at the free end D a) Determine the reactions at supports A and C. 4 marks) b) Obtain the shear force and the bending moment functions (in terms of x) for each segment along the...

  • A simply supported beam as shown in the figure. The beam section is W18x211. The beam...

    A simply supported beam as shown in the figure. The beam section is W18x211. The beam must support its own weight and must carry the following loading: Super-imposed distributed dead load = 0.25 kip/ft Distributed live load = 1 kip/ft Concentrated dead load = 12 kip The beam span L = 26 ft and the distance of the concentrated load from the right support a=6 ft. Consider analy- sis of beam subjected to load combination 1.2 dead + 1.6 live....

  • 2. A 30 ft long simply supported beam supports a uniformly distributed load of 2 kips/ft...

    2. A 30 ft long simply supported beam supports a uniformly distributed load of 2 kips/ft over the entire span. The beam and cross section are shown below. Draw the shear and moment diagrams, find the neutral axis location, moment of inertia of the composite section, the maximum bending stress on the cross section. (40 points) 10" 2 k/ft 1-3" 30'-0"

  • The simply supported beam shown in Figure 1 is pin-supported at A and roller-supported at D....

    The simply supported beam shown in Figure 1 is pin-supported at A and roller-supported at D. la) Replace the distributed loads in Figure 1 by an equivalent resultant force and locate its location with respect to A. {2 + 3 marks 1b) Calculate the reactions at supports A and D. {2 marks 1c) Calculate the shear force and bending moment at point C. {4 marks) 15 kN/m 6 kN/m D B q 3.0 m 3.0 m 3.0 m Figure 1

  • 1) The uniform beam shown is supported by a pin at A and a light rope...

    1) The uniform beam shown is supported by a pin at A and a light rope at B. A 1,000 lb weight is supported at C. Determine the normal force, shear force, and bending moment at point P. (15 p.) 30 3 А 2) The uniform beam shown is supported by a pin at and a roller at B. Using the analytical method (i.e., sections), construct the shear and moment diagrams. Write your equations V(x) and Mix) for each section...

  • The beam AC is supported by a smooth pin at A and a roller at B...

    The beam AC is supported by a smooth pin at A and a roller at B as shown in the figure below. a. Sketch the free-body diagram of the beam and use it to determine the support reaction components at A and B. b. Draw the shear and moment diagrams for the beam. 6. The beam AC is supported by a smooth pin at A and a roller at B as shown in the figure below. 6 kN 12 kN/m...

  • 1-(25%) Draw shear and moment diagrams for the beam shown in Figure P-1 . Draw a sketch of the deflected shape. The spans are 30-ft long each (total of 90-ft), the concentrated loads are eac...

    1-(25%) Draw shear and moment diagrams for the beam shown in Figure P-1 . Draw a sketch of the deflected shape. The spans are 30-ft long each (total of 90-ft), the concentrated loads are each 120 kips, and placed at the center of left span and the free end. El is constant. Left support is a pin and the other two are roller supports. 120 kips 120 kips Figure P-1 1-(25%) Draw shear and moment diagrams for the beam shown...

  • A loaded beam with a pin support at B and a rller support at C is shown in Figure 1. The applied loads on the bea...

    A loaded beam with a pin support at B and a rller support at C is shown in Figure 1. The applied loads on the beam are: an anti-clockwise point moment at A, a variably distributed load between B and C, and a clockwise point moment at D g kN/m f kNm h kN m A C 4 m 2 m 2 m Figure 1 The magnitude of the anti-clockwise point moment f in units of kN'm can be found...

  • A loaded beam with a pin support at B and a roller support at C is...

    A loaded beam with a pin support at B and a roller support at C is shown in Figure 1. The applied loads on the beam are: an anti-clockwise point moment at A, a variably distributed load between B and C, and a clockwise point moment at D. A loaded beam with a pin support at B and a roller support at C is shown in Figure 1. The applied loads on the beam are: an anti-clockwise point moment at...

  • For the beam shown, draw the reactions at supports A and B in the positive direction,...

    For the beam shown, draw the reactions at supports A and B in the positive direction, and also draw the shear and bending moment in the positive direction on your FBD. where w=23 kip/ft L=5 ft find w kip ft C A B L/3 ft L ft The shear equation across the beam. kip ENTER X 2 tries remaining. 1 point(s) possible The bending moment equation across the beam. kip.ft ENTER 3 tries remaining. 1 point(s) possible The internal shear...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT