Question

The Terrestrial Telescope. The converging objective lens and the diverging eyepiece lens share a common focal point. Note that the other focal point of the diverging lens overlaps the position of the first lens in my particular drawing. This isn’t a necessary condition, just a convenience for the drawing.

A) Determine to final image by ray tracing. Trace and label the image of the first lens, then use this image as the object for the second lens. Clearly label the final image.

B) Is the final image real or virtual?

converging lens diverging lens H Shared focal point

0 0
Add a comment Improve this question Transcribed image text
Answer #1

B A AB AB object final image AB first image from first lens B) Final image is Virtual

Add a comment
Know the answer?
Add Answer to:
The Terrestrial Telescope. The converging objective lens and the diverging eyepiece lens share a common focal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The compound microscope consists of two converging lenses: the objective and the eyepiece. Suppose the focal...

    The compound microscope consists of two converging lenses: the objective and the eyepiece. Suppose the focal length f_1 of the objective is 20 cm, and the focal length f2 of the eyepiece is 20 cm. The separation between the objective and eyepiece is 66 cm. The object is located 30 cm in front of the objective. (These numbers are not realistic for a real microscope.) a. Calculate the location and magnification of the image, and state whether it is a...

  • A 4.0 cm tall object is 5.0 cm in front of a diverging lens with a focal length of -6.0 cm. A converging lens with a fo...

    A 4.0 cm tall object is 5.0 cm in front of a diverging lens with a focal length of -6.0 cm. A converging lens with a focal length of 6.0 cm is located 8.0 cm behind the diverging lens. (As viewed from the side, from left to right, the sequence is object - diverging lens - converging lens - observer. Rays then travel from left to right through the system.) (a) Use ray tracing to draw image 1 and image...

  • A converging lens with a focal length of 40 cm and a diverging lens with a...

    A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cm are 160 cm apart. A 2 cm tall object is 60 cm in front of the converging lens. a. Use ray tracing to find the position and height of the image. To do this, accurately use a ruler or paper with a grid. Determine the image distance and image height by making measurements on your diagram. b. Calculate the...

  • A diverging lens with a focal length of -19.8 cm and a converging lens with a...

    A diverging lens with a focal length of -19.8 cm and a converging lens with a focal length of 17.9 cm have a common central axis. Their separation is 37.3 cm. An object of height 1.0 cm is 28.2 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? Submit Answer Tries...

  • Part A: A diverging lens has of focal length of 15.0 cm. An object is placed...

    Part A: A diverging lens has of focal length of 15.0 cm. An object is placed 21 cm to the left of the lens. a) draw a ray diagram showing the situation. b) find the location of the image produced by the lens (mind the signs). Part B: A converging lens is located 30 cm to the right of the previously mentioned diverging lens (part A). As a result, the image you found in part (a) is now instead located...

  • Which of the following are functions of the eyepiece lens of a refracting telescope? Check all...

    Which of the following are functions of the eyepiece lens of a refracting telescope? Check all that apply. A to produce an image whose angular size is greater than that of the object B to magnify the image produced by the objective lens C to reverse the orientation of the image produced by the objective lens D to form an image at the focal point of the objective lens What must result if the eyepiece lens of a refracting telescope...

  • An object is 6.0 cm in front of a converging lens with a focal length of 10 cm

    An object is 6.0 cm in front of a converging lens with a focal length of 10cm.1. Use ray tracing to determine the location of the image.An object is 32 cm in front of a diverging lens with a focal length of 16 cm.2. Use ray tracing to determine the location of the image.

  • A diverging lens of focal length −17cm and a converging lens of focal length 15cm are...

    A diverging lens of focal length −17cm and a converging lens of focal length 15cm are separated by 42cm. An object is placed 30cm to the left of the diverging lens. Compute the distance (with correct sign) the final image forms from the converging lens.

  • 20 cm A diverging lens with a focal length of -10 cm is on the same...

    20 cm A diverging lens with a focal length of -10 cm is on the same axis as a converging lens with a focal length of +15 cm as illustrated. The distance between the lenses is 20 cm. An object is placed 30 cm to the left of the diverging lens. a) (10 Points) Where is the final image formed? (Submit a PDF file with a maximum size of 8 MB) Choose File no file selected b) (10 Points) Calculate...

  • 20 cm A diverging lens with a focal length of -10 cm is on the same...

    20 cm A diverging lens with a focal length of -10 cm is on the same axis as a converging lens with a focal length of +15 cm as illustrated. The distance between the lenses is 20 cm. An object is placed 30 cm to the left of the diverging lens. a) (10 Points) Where is the final image formed? (Submit a PDF file with a maximum size of 8 MB) Choose File No file chosen b) (10 Points) Calculate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT