Question

If mass m1 is displaced 1 in. from its static equilibrium position and released, determine the resulting displacements x1(t) and x2(t) of the masses shown.5. If mass m1 is displaced 1 in. from its static equilibrium position and released, determine the resulting displacements xi(

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Bg Lagrangion Equation of the given System . 6: T-V . Here 6: T-V Takie m aa(t) ne the coordinates of ack V: DE 2. If the cooW.K.T Les Solution et tous les monac sy steron be (7.00) det (k+7604) 20 m is (2012) (*_) - 3 w wohl eher 2 352 26 mon .: We

Add a comment
Know the answer?
Add Answer to:
If mass m1 is displaced 1 in. from its static equilibrium position and released, determine the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Here we consider the two masses m1 and m2 connected this time by springs of stiffnesses...

    Here we consider the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as shown in the figure below. The movement of each of the 2 masses relative to its position of static equilibrium is designated by x1(t) and x2(t). 1. Demonstrate that the differential equation whose unknown is the displacement x1(t) is written as follows: 2. Determine the second differential equation whose unknown is the displacement x2(t). 3. Determine the free oscillatory...

  • We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses...

    We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as shown in the figure below. We denote x1 (t) and x2 (t) as the movement of each of the 2 masses relative to its position of equilibrium static. 1) Prove that the differential equation whose unknown is the displacement is written in the following form: 2) Deduce the second differential equation whose unknown is the displacement 3) Determine the...

  • We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses...

    We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as shown in the figure below. We denote by x1(t) and x2(t) the movement of each of the 2 masses relative to its position of equilibrium static. 1. Prove that the differential equation whose unknown is the displacement x1(t) is written in the following form: (3 points) 2. Deduce the second differential equation whose unknown is the displacement x2(t) (3...

  • Differentiel equations We consider here, the two masses m1 and m2 connected this time by springs...

    Differentiel equations We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as indicated in the figure below. We denote by x1 (t) and x2 (t) the movement of each of the 2 masses relative to its static equilibrium position. 1. Prove that the differential equation whose unknown is the displacement x1 (t) is written in the following form: 2. Deduce the second differential equation whose unknown is the displacement...

  • The slider of mass m1 is released from rest in the position shown and then slides...

    The slider of mass m1 is released from rest in the position shown and then slides down the right side of the contoured body of mass m2. For the conditions m1-0.69 kg, m2 = 3.32 kg and r = 0.52 m, determine the absolute velocities of both masses at the instant of separation. Velocities are positive if to the right, negative if to the left. Neglect friction. n1 mg Answers: v1 = m/s V2 m/s

  • A mass of 0.3 kg is suspended from a spring of stiffness 200 Nm–1 . The mass is displaced by 10 mm from its equilibrium...

    A mass of 0.3 kg is suspended from a spring of stiffness 200 Nm–1 . The mass is displaced by 10 mm from its equilibrium position and released, as shown in Figure 1. For the resulting vibration, calculate: (a) (i) the frequency of vibration; (ii) the maximum velocity of the mass during the vibration; (iii) the maximum acceleration of the mass during the vibration; (iv) the mass required to produce double the maximum velocity calculated in (ii) using the same...

  • We consider 2 coupled harmonic oscillators, as shown in the diagram below. The mass m1 is...

    We consider 2 coupled harmonic oscillators, as shown in the diagram below. The mass m1 is subjected to an external force F (t). 1. Construct the system of differential equations whose unknowns are the displacements x1 (t) and x2 (t) of each of the 2 masses. (5 points). 2. Solve x1(t) and x2(t) in the case where m1 = 1kg; m2 = 2kg; k = 1 N / m; F(t) = 0 and x1(0) = 0; ?1′(0) = 0; x2(0)...

  • We consider 2 coupled harmonic oscillators, as shown in the diagram below The mass m1 is...

    We consider 2 coupled harmonic oscillators, as shown in the diagram below The mass m1 is subjected to an external force F(t). 1) Construct the system of differential equations whose unknowns are the displacements x1 (t) and x2 (t) of each of the 2 masses. 2) Solve x1 (t) and x2 (t) in the case where m1 = 1kg; m2 = 2kg; k = 1 N / m; F (t) = 0 and x1 (0) = 0; ?1′ (0) =...

  • centroidal radius of gyration 750mm. If point C is pushed 5) The 3kg arm ABC with center of mass G has a down 3mm from its equilibrium position and released from rest (a) Determine the frequency...

    centroidal radius of gyration 750mm. If point C is pushed 5) The 3kg arm ABC with center of mass G has a down 3mm from its equilibrium position and released from rest (a) Determine the frequency of the resulting oscillation k 50 N/m 500 mm k50 N/m 500 mn -900 min- centroidal radius of gyration 750mm. If point C is pushed 5) The 3kg arm ABC with center of mass G has a down 3mm from its equilibrium position and...

  • I can't get part B The cylinder is displaced 0.18 m downward from its equilibrium position...

    I can't get part B The cylinder is displaced 0.18 m downward from its equilibrium position and is released at time t = 0. Determine the displacement y and the velocity v when t = 2.2 s. The displacement and velocity are positive if downward, negative if upward. What is the magnitude of the maximum acceleration? K= 147 N/m Equilibrium position m = 4.0 kg Answers: When t = 2.2 s: ya 0.129 When t = 2.2 s: V =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT