Question

. In a parallel flow heat exchanger, hot liquid enters at 400°C and leaves at 250°C. Cold fluid enters at 50°C and leaves at

this problem in heat exchanger, please solve.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

di 0obm \20 w 1 >_ w K,do0.0g m S J6XID KT/n To110C 3600 agrithaicmean empesrmiare (abiau) 25 (uoo-So) し250-110) PRwt In Yo -Tudo X 19D Ui 120 Ui A.6X1D 1D 81.428 XTLXO. 6xLx 229.18 3600 tube 3 2-6 m CS Scanned with CamScanner

Add a comment
Know the answer?
Add Answer to:
this problem in heat exchanger, please solve. . In a parallel flow heat exchanger, hot liquid...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem X3-5, Heat Transfer, Spring 2018 A single-pass, double-tube counterflow heat exchanger will be used to...

    Problem X3-5, Heat Transfer, Spring 2018 A single-pass, double-tube counterflow heat exchanger will be used to heat a 0.14 kg/s stream of water nowing in the 12-mm diameter inside tube. The water in the inside tube enters the heat exchanger at 25 C. The water will be heated with a 0.12 kg/s m of hot water flowing in the annulus between the inside and outside tube that enters the heat exchanger at 80°C. UP the hot and cold streams, and...

  • A counter-flow heat exchanger is stated to have an overall heat transfer coefficient of 284 W/m2.K...

    A counter-flow heat exchanger is stated to have an overall heat transfer coefficient of 284 W/m2.K when operating at design and clean conditions. Hot fluid enters the tube side at 101°C and exits at 71°C, while cold fluid enters the shell side at 27°C and exits at 42°C. After a period of use, built-up scale in the heat exchanger gives a fouling factor of 0.0004 m2 K/W. The surface area is 93 m². Assume both hot and cold fluids have...

  • Hot and cold water streams exchange heat in a double pipe heat exchanger in counter current...

    Hot and cold water streams exchange heat in a double pipe heat exchanger in counter current flow. The pipes are 3 ft long. The inside pipe is a 5/8 inch BWG 12 copper tube. The outside pipe is a 1 inch Sch 40 steel pipe. The outside pipe is insulated to minimize heat loss to the surroundings. The hot water enters the inside tube at 180F with a flow rate such that Re = 10000 The cold water flows through...

  • Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and...

    Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and is cooled by a cold water stream of flow rate 25 kg/min. The inlet temperatures of hot and cold water streams are 70 oC and 25 oC, respectively. The outlet temperature of the hot water is expected to be 50 oC. The individual convective heat transfer coefficient on both sides of the heat transfer area is 600 W/m2 .K. Take the specific heat for...

  • Problem 2: Heat exchanger (25 points) Cold water (op 4179 J/kg K) enters the tubes of a heat exchanger at 20 °C at a rate of 3 kgs. while hot oil (cp 2200 J/kg.K) enters the shell at 130 C at the sam...

    Problem 2: Heat exchanger (25 points) Cold water (op 4179 J/kg K) enters the tubes of a heat exchanger at 20 °C at a rate of 3 kgs. while hot oil (cp 2200 J/kg.K) enters the shell at 130 C at the same mass flow rate and leaves at 60°C The heat exchanger consistsoftwo shells and 20 tubes, each executing four passes (two passes per shell). If the W/m2-K, assume the tube wall is very thin with convective heat transfer...

  • please do 11.33 11.32 A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat...

    please do 11.33 11.32 A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat water (unmixed) from 30 to 80°C at a rate of 3 kg/s. The exhaust gases, hav- ing thermophysical properties similar to air, enter and exit the exchanger at 225 and 100°C, respectively. If the overall heat transfer coefficient is 200 W/m2.K, estimate the required surface area. 11.33 Consider the fluid conditions and overall heat transfer coefficient of Problem 11.32 for a concentric tube heat...

  • at Your objective in this problem is to design a "simple" annular flow heat exchanger (see...

    at Your objective in this problem is to design a "simple" annular flow heat exchanger (see the "simple" description the beginning of this HW). A heat exchanger of this kind can easily be built in your garage with two different size pper pipes along with some solder. Assume both fluids are water with the cold fluid flowing in the outer tube. The pipe diameters are based in Type L copper tube dimensions: outside diameter 1/2 -inch nominal tube is 0.625...

  • Consider a cross-flow heat exchanger with a surface area of 10 m². The cold fluid has...

    Consider a cross-flow heat exchanger with a surface area of 10 m². The cold fluid has a heat capacity rate of 2310 W/K and inlet and outlet temperatures of 25°C and 150°C respectively. The hot fluid has a heat capacity rate of 2000 W/K and an inlet temperature of 325°C. If the cold fluid can be considered mixed and the hot fluid unmixed, find the overall heat transfer coefficient, u, in W/m2.K, and the outlet temperature, in °C, of the...

  • A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used...

    A shell-and tube heat exchanger has one-shell pass and 2-tube passes. This heat exchanger is used to cool oil, flowing through the tube-side from 140°C to 50°C. The cooling is accomplished by water, flowing through the shell-side, which enters the heat exchanger at 15°C and leaves at 32°C. Each tube pass consists of 60, 2.54-cm-O.D. tubes with a wall thickness of 1.65 mm.if the inside and outside heat transfer coefficients are h1=260 W/(m^2°C) and h°=970 W/(m^2°C), respectively, and the fouling...

  • Determine the effectiveness of the concentric tube heat exchanger. The working fluid through the heat exchanger...

    Determine the effectiveness of the concentric tube heat exchanger. The working fluid through the heat exchanger is water and is flowing at 1 m/min for both cold and hot pipes. The hot water temperature at the tube inlet is 90°C and the temperature at the tube outlet is 60°C. The cold water temperature at the tube inlet is 50°C and the temperature at the tube outlet is 80°C. Assume the density and the specific heat of water are 988.1 kg/m3...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT