Question

It is found that superheated steam (100kg/hr, 1bar 250°C) gives Q=29960kJ/hr in a heat exchanger and leaves as saturated stea

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Giventa super heafrd steara (lookg/h7 , 1 bon,250°C) d=29960 kJ/ho (©) Juperheaped osfrorn - > 3 operated wojos (106) Jafuratles cu 251.80=0 14 E 61907.6 XL D I of sumonits] = lk of all ht!suap 14,72248 1 olume = 1.8.5 = hel =42:40619 m2/kg. I been fThank you and please upvote it.

Add a comment
Know the answer?
Add Answer to:
It is found that superheated steam (100kg/hr, 1bar 250°C) gives Q=29960kJ/hr in a heat exchanger and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Propane gas enters a continuous adiabatic heat exchanger 240°C. Superheated steam at 300 C and 5 bar enters the exchang...

    Propane gas enters a continuous adiabatic heat exchanger 240°C. Superheated steam at 300 C and 5 bar enters the exchanger flowing countercurrently to the propane and exits as a saturated liquid at the same pressure at 40 C and 250 kPa and exits at Taking flow chart. Include both mass and volumes on your inlet and outlet streams. b. Calculate the specific enthalpy values for the inlet and outlet streams. c. Use an energy balance to calculate the required mass...

  • An adiabatic heat exchanger is one for which no heat is exchanged with the surroundings. All...

    An adiabatic heat exchanger is one for which no heat is exchanged with the surroundings. All of the heat lost by the hot stream is transferred to the cold stream in this adiabatic process. In a proposed process, propane gas enters a continuous adiabatic heat exchanger at 45 °C and 265 kPa and exits at 255 °C. Superheated steam at 300 °C and 7.0 bar enters the exchanger flowing countercurrently to the propane and exits as a saturated liquid at...

  • Homework 2 Problem 1: A piston-cylinder device initially contains 0.35-kg steam at 3.5 MPa, superheated by...

    Homework 2 Problem 1: A piston-cylinder device initially contains 0.35-kg steam at 3.5 MPa, superheated by 7.4 C. Now the stream loses heat to the surroundings and the piston moves down, hitting a set of stops at which point the cylinder contains saturated liquid water. The cooling continues until the cylinder contains water at 200C. Determine (a) the final pressure and the quality (if mixture), (b) the boundary work, (c) the amount of heat transfer when the piston first hits...

  • Sulfur dioxide flows through a heat exchanger at 45 moles/hr. The inlet to the isobaric heat...

    Sulfur dioxide flows through a heat exchanger at 45 moles/hr. The inlet to the isobaric heat exchanger is 100°C and 1bar and the heat rate is 1,300 kJ/hr. Assume an ideal gas with a Cp 0.05791T with T in K. mol K a. b. c. Determine the exit temperature for this heat exchanger. Determine the total rate change of entropy of the exit to inlet to the heat exchanger? Is the process of increasing SO2 temperature reversible? Prove with the...

  • A stream containing ethane gas (C2He) enters the inner pipe of a double-pipe heat exchanger at 40°C and 105 kPa and exits from the pipe at 240*C and the same pressure. Superheated steam at 315 C...

    A stream containing ethane gas (C2He) enters the inner pipe of a double-pipe heat exchanger at 40°C and 105 kPa and exits from the pipe at 240*C and the same pressure. Superheated steam at 315 C and 5.0 bars enters the outer (annular) pipe, flowing counter-currently to the ethane, and exits as a saturated vapor at the same pressure. Neglecting the heat losses from the heat exchanger to its surroundings. Draw a diagram of the process. (5) What are the...

  • pls Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa)...

    pls Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa) and exits at (260°C). Superheated steam at (400°C) and (5 bar) enters to exchanger flowing counter currently to a Toluene and exits as a saturated liquid at the same pressure. 1- If (150 mol) of Toluene is fed, draw and label a process flow chart. 2- Calculate the values of inlet-outlet enthalpies. 3- Calculate the volumetric feed ratio of the two streams (m' steam...

  • please Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa)...

    please Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa) and exits at (260°C). Superheated steam at (400°C) and (5 bar) enters to exchanger flowing counter currently to a Toluene and exits as a saturated liquid at the same pressure. 1- If (150 mol) of Toluene is fed, draw and label a process flow chart. 2- Calculate the values of inlet-outlet enthalpies. 3- Calculate the volumetric feed ratio of the two streams (m' steam...

  • Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality...

    Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.3 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30oC and exits at 60oC. The ideal gas model with cp = 1.005 kJ/kg·K can be assumed for air. Kinetic and potential energy effects are negligible. Determine the temperature of...

  • Steam Generator air (inlet) - 320°C P. = 100 kPa th =0.5 kg/s heat exchanger -...

    Steam Generator air (inlet) - 320°C P. = 100 kPa th =0.5 kg/s heat exchanger - water (inlet) T = 20°C Pw = 100 kPa m = 0.025 kg/s Problem sketch Solve with EES. Document all necessary balances The problem sketch illustrates a heat exchanger in which hot air is used to generate steam. Air enters the heat exchanger at 1a, in = 320C, Pa = 100 kPa, and ma -0.5 kg/s. Model air as an ideal gas with constant...

  • Chemical Engineering Question 100 KW of energy from a stream of superheated steam@ 200kg/sec, 10 bar...

    Chemical Engineering Question 100 KW of energy from a stream of superheated steam@ 200kg/sec, 10 bar and 2100 C is used in a heat exchanger to preheat a reactor feed. Determine the (a) enthalpy, (b) temperature and the phase of the resulting stream. 100 Kg/hr. of a saturated steam at 1 bar is mixed with superheated steam available at 4000C and 1 bar to produce superheated steam at 3000C and 1 bar. Calculate amount of superheated steam produced at 3000C...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT