Question

6. (9pt) A disk and a ring are mounted on low-friction bearings on the same axle...

6. (9pt) A disk and a ring are mounted on low-friction bearings on the same axle and can

be brought together so that they couple and rotate as one unit. The mass is uniformly

distributed throughout the objects. The disk and the ring both have a radius of 10cm and a

mass of 4kg. The objects are set spinning about their central axis, the disk at 400rev/min

in clockwise direction and the ring at 800rev/min in the opposite direction. They then

couple together and rotate with an angular velocity of 400rev/min in counter-clockwise

direction. Determine whether the angular momentum of the system is conserved, and

what average torque might have acted on the system if it was applied steadily over a

period of 1 minute. The moments of inertia of a solid disk and a ring with respect to their

central axis are ID =

MR2

2

, IR = MR2 .

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
6. (9pt) A disk and a ring are mounted on low-friction bearings on the same axle...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can...

    Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 3.25 kg m2 about its central axis, is set spinning counterclockwise (which may be taken as the positive direction) at 181 rev/min. The second disk, with rotational inertia 7.95 kg.m2 about its central axis, is set spinning counterclockwise at 879 rev/min. They then couple together. (a)...

  • Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can...

    Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 3.00 kg m about its central axis, is set spinning counterclockwise at 550 rev/min. The second disk, with rotational inertia 6.40 kg m about its central axis, is set spinning counterclockwise at 800 rev/min. They then couple together. (a) What is their angular speed after coupling?...

  • Problem 10 Two disks are mounted on low-friction bearings on a common shaft. The first disc...

    Problem 10 Two disks are mounted on low-friction bearings on a common shaft. The first disc has rotational inertia I and is spinning with angular velocity w. The second disc has rotational inertia 2I and is spinning in the same direction as the first disc with angular velocity 2 o as shown. The two disks are slowly forced toward each other along the shaft until they couple and have a final common angular velocity of:

  • A ring of mass 2 M and radius 1 R rotates in a CCW direction with...

    A ring of mass 2 M and radius 1 R rotates in a CCW direction with initial angular speed 2 ω. A disk of mass 4 M and radius 1 R rotates in a CW direction with initial angular speed 4 ω. The ring and disk "collide" and eventually rotate together. Assume that positive angular momentum and angular velocity values correspond to rotation in the CCW direction. What are the moments of inertia for the ring and disk? Write your...

  • The disk ntating with a constant angular accelerstion Assurse the axle is frictionkess Ca) Calcud...

    please answer 5 and 6 im sorry thats the closest pic i can get to it the disk ntating with a constant angular accelerstion Assurse the axle is frictionkess Ca) Calcudlate the magnituke and direction of the net torpsue prodhuced by the twe lorces b) Determine the magnitude of the angular acceleration of the disk rad/s Cakulate the angular momentum, in kg mP/s, of an ice skater spinning at 6.00 rew/s given is moment of inertia is 0 rew/s given...

  • A physics professor sits on a stool mounted to a low friction rotating platform while holding...

    A physics professor sits on a stool mounted to a low friction rotating platform while holding a 2.8 kg mass in each hand. When his arms are fully extended away from his body, the masses are each 1.15 m from the central vertical axis of rotation. A helpful student pushes on the masses as the professor begins spinning faster and faster until the professor rotates with an angular velocity of 0.9 rad/s. The moment of inertia of the professor and...

  • Work out the highlighted questions (3-6) clearly and with units, please. Thanks! 4/5 a the minimum...

    Work out the highlighted questions (3-6) clearly and with units, please. Thanks! 4/5 a the minimum kinetic energy at the apping point? (C) Use conservation of energy to determine the minimum angular velocity of the block just after the collision, (d) then use conservation of angular momentum during the collision to find the initial speed of the bullet vo. (Hint: Ignore the mass of the bullet after the collision. The moment of inertia of the cube about its bottom-right edge...

  • the question is in last picture. i provided the lab content... I need guidance. thank you....

    the question is in last picture. i provided the lab content... I need guidance. thank you. INVESTIGATION 10 ROTATIONAL MOTION OBJECTIVE To determine the moment of inertia I of a heavy composite disk by plotting measured values of torque versus angular acceleration. THEORY Newton's second law states that for translational motion (motion in a straight line) an unbalanced force on an object results in an acceleration which is proportional to the mass of the object. This means that the heavier...

  • A child pushes her friend (m = 25 kg) located at a radius r = 1.5...

    A child pushes her friend (m = 25 kg) located at a radius r = 1.5 m on a merry-go-round (rmgr = 2.0 m, Imgr = 1000 kg*m2) with a constant force F = 90 N applied tangentially to the edge of the merry-go-round (i.e., the force is perpendicular to the radius). The merry-go-round resists spinning with a frictional force of f = 10 N acting at a radius of 1 m and a frictional torque τ = 15 N*m...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT