Question

Problem 7.67 The system shown at right is the back end of a jet aircraft engine. Operating information about the system is shown in the table and figure. Air flows steadily through the system. Assume changes in gravitational potential energy are negligible and air can be modeled as an ideal gas with room temperature specific heats. (a) Determine the velocity of the air leaving the nozzle, in m/s. (b) Determine the cross-sectional area Ac at the nozzle outlet, in m (c) Determine the shaft power out of the turbine, in kW. CRr 300,000 kw State TC P(kPa) V(m/s) A 4 Heat Exchanger Nozzle 600 | 800 | V1~V2 V3 << m, = 370 kg/s 3 1300 600 4 950 100 2?? Turbine Turbine: steady-state and adiabatic Nozzle: steady-state and adiabatic Heat exchanger: steady-state

0 0
Add a comment Improve this question Transcribed image text
Answer #1

HEX 么 a velocity ain lewin Nozzle Takinr Nozzle as sysen 2.3 Vel 2ウ 2 y®, 2x9.glx зао x1,00 5x103 (1300-450) 50S32-lo mlsec T

Add a comment
Know the answer?
Add Answer to:
Problem 7.67 The system shown at right is the back end of a jet aircraft engine....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A turbojet aircraft has its compressor rated at the pressure ratio of 10. Given that the aircraft...

    A turbojet aircraft has its compressor rated at the pressure ratio of 10. Given that the aircraft flies with a velocity of 289 m/s at an altitude where the air is at a pressure of 29.5 kPa and temperature of-31.0·C. The air enters the compressor at 54 kg/s. The fuel used during the flight is rated to provide 39300 kJ of heat energy from every kilogram burnt and the temperature of the air entering the turbine is 1047.744 K. Calculate...

  • A jet engine propels an aircraft at 254 m/s through air at 39 kPa and 273 K. The compressor pressure ratio is 9 and the temperature at the turbine inlet is 873 K. a) Determine the temperature of the a...

    A jet engine propels an aircraft at 254 m/s through air at 39 kPa and 273 K. The compressor pressure ratio is 9 and the temperature at the turbine inlet is 873 K. a) Determine the temperature of the air as it enters the exit nozzle. Give your answer in Kelvin to 2 decimal places Assume ideal operation for all components and constant specific heats at room temperature. Take the properties of air at room temperature to be R =...

  • Problem 1 (20 points): Consider the ideal Bra below. The compressor, turbine, and process fluid is...

    Problem 1 (20 points): Consider the ideal Bra below. The compressor, turbine, and process fluid is air that can be modeled as an conditions for the operation of the cycle are known: mts: Consider the ideal Brayton cycle model for an aircraft engine as shown in the diagram sur, turbine, and nozzle are all assumed to operate with an isentropic efficiency of 100%. The that can be modeled as an ideal gas with constant specific heats. The following steady-state 7...

  • A jet engine propels an aircraft at 289 m/s through air at 54 kPa and 267 K.

    A jet engine propels an aircraft at 289 m/s through air at 54 kPa and 267 K. The compressor pressure ratio is 9 and the temperature at the turbine inlet is 885 K. b) Taking the pressure in the combustion chamber as 843.5 kPa and the temperature at the turbine exit to be 518 K, determine the velocity of the exhaust gases. Give your answer in m/s to 2 decimal places Assume ideal operation for all components and constant specific heats at room...

  • Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily...

    Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m^2.The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine the mass flow rate of the air and the temperature of the air leaving the diffuser. Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K....

  • Separate streams of air and water flow through the compressor and heat exchanger arrangement shown below....

    Separate streams of air and water flow through the compressor and heat exchanger arrangement shown below. Steady state operating data are provided on the figure. Heat transfer with the surroundings can be neglected as can all kinetic and potential energy effects. The air is modeled as an ideal gas. Determine: (a) the total power required by both compressors, in kW. (b) the mass flow rate of the water, in kg/s. Separate streams of air and water flow through the compressor...

  • Air as an ideal gas flows through the turbine and heat exchanger arrangement shown in figure s...

    Air as an ideal gas flows through the turbine and heat exchanger arrangement shown in figure shown below. Steady-state data are given on the figure. Stray heat transfer and kinetic and potential energy effects can be ignored. Determine (a) temperature T3, in K. (b) the power output of the second turbine, in kW. (c) the rates of entropy production, each in kW/K, for the turbines and heat exchanger. (d) Using the result of part (c), place the components in rank...

  • 1. Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C...

    1. Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C and leaves the tubes at 6 MPa and 450°C with a velocity of 80 m/s. Calculate the velocity of the water at the tube inlet and the inlet volume flow rate. [5-14] 2. Air enters a nozzle steadily at 50 psia, 140°F, and 150 ft/s and leaves at 14.7 psia and 900 ft/s. The heat loss from the nozzle is estimated to be 6.5...

  • Quantitative: In the 1950s liquid hydrogen was considered as a fuel for a new type of...

    Quantitative: In the 1950s liquid hydrogen was considered as a fuel for a new type of aircraft being developed, the SR-71 Blackbird (shown in Figure 1). Figure 1: The SR-71 Blackbird Early research on the project focused on which fuel to use for the Blackbird. Pratt & Whitney had a J-57 engine that was designed for kerosene and being considered for implementation on the Blackbird. The J-57 only took 5 months to convert to running on liquid hydrogen, however tests...

  • An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio rp of...

    An aircraft engine operates on a simple ideal Brayton cycle with a pressure ratio rp of 9. Heat is added to the cycle at a rate of 490 kW; air passes through the engine at a rate of 1.1 kg/s; and the air at the beginning of the compression is at P1 = 71 kPa and T1 = 0 oC. Use constant specific heats at room temperature. The properties of air at room temperature are cp =1.005 kJ/kg.K and k...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT