Question

Given below is the KCL equation of a circuit. Draw the circuit.

Screenshot (15).png

Given below is the KCL equation of a circuit. Draw the circuit. \(\left[\begin{array}{ccc}1+\frac{1}{4}+\frac{1}{3} & -\frac{1}{4} & -\frac{1}{3} \\ -\frac{1}{4} & 1+\frac{1}{4}+\frac{1}{3} & -1 \\ -\frac{1}{3} & -1 & 1+\frac{1}{3}+\frac{1}{5}\end{array}\right]\left[\begin{array}{c}V_{1} \\ V_{2} \\ V_{3}\end{array}\right]=\left[\begin{array}{c}10 \\ -20 \\ 0\end{array}\right]\)

1 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Given below is the KCL equation of a circuit. Draw the circuit.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Consider the 3 × 3 matrices

    3. (3pts) Consider the \(3 \times 3\) matrices \(B=\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & 0 & 4 \\ 0 & 0 & 1\end{array}\right]\) and \(A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]\), where \(\mathbf{a}_{1}\), \(\mathbf{a}_{2}\), and \(\mathrm{a}_{9}\) are the columns of \(A\). Let \(A B=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]\), where \(v_{1}, v_{2}\), and \(v_{3}\) are the columns of the product. Express a as a linear combination of \(\mathbf{v}_{1}, \mathbf{v}_{2}\), and \(\mathbf{v}_{3}\).4. (3pts) Let \(T(x)=A x\) be the linear transformation given by$$...

  • The positive, negative and zero sequence bus impedance and admittance matrices of a system are given as follows:

    The positive, negative and zero sequence bus impedance and admittance matrices of a system are given as follows:\(Z^{+}=Z^{-}=j\left[\begin{array}{ccc}0.14 & 0.11 & 0.125 \\ 0.11 & 0.14 & 0.125 \\ 0.125 & 0.125 & 0.175\end{array}\right] \quad Y^{+}=Y^{-}=j\left[\begin{array}{ccc}-24 & 10 & 10 \\ 10 & -24 & 10 \\ 10 & 10 & -20\end{array}\right]\)\(Z^{0}=j\left[\begin{array}{ccc}0.10 & 0.10 & 0.10 \\ 0.10 & 0.30 & 0.20 \\ 0.10 & 0.20 & 0.30\end{array}\right] \quad Y^{0}=j\left[\begin{array}{ccc}-16.66 & 3.33 & 3.33 \\ 3.33 & -6.66 & 3.33...

  • Defining the cross product The cross product of two nonzero vectors

    Defining the cross product The cross product of two nonzero vectors \(\vec{u}\) and \(\vec{v}\) is another vector \(\vec{u} \times \vec{v}\) with magnitude$$ |\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin (\theta), $$where \(0 \leq \theta \leq \pi\) is the angle between the two vectors. The direction of \(\vec{u} \times \vec{v}\) is given by the right hand rule: when you put the vectors tail to tail and let the fingers of your right hand curl from \(\vec{u}\) to \(\vec{v}\) the direction of \(\vec{u} \times \vec{v}\)...

  • Consider the heat conduction problem

    5. If \(f(x)=\left\{\begin{array}{cc}0 & -2<x<0 \\ x & 0<x<2\end{array} \quad\right.\)is periodio of period 4 , and whose Fourier series is given by \(\frac{a_{0}}{2}+\sum_{n=1}^{2}\left[a_{n} \cos \left(\frac{n \pi}{2} x\right)+b_{n} \sin \left(\frac{n \pi}{2} x\right)\right], \quad\) find \(a_{n}\)A. \(\frac{2}{n^{2} \pi^{2}}\)B. \(\frac{(-1)^{n}-1}{n^{2} \pi^{2}}\)C. \(\frac{4}{n^{2} \pi^{2}}\)D. \(\frac{2}{n \pi}\)\(\mathbf{E}_{1} \frac{2\left((-1)^{n}-1\right)}{n^{2} \pi^{2}}\)F. \(\frac{4}{n \pi}\)6. Let \(f(x)-2 x-l\) on \([0,2]\). The Fourier sine series for \(f(x)\) is \(\sum_{w}^{n} b_{n} \sin \left(\frac{n \pi}{2} x\right)\), What is \(b, ?\)A. \(\frac{4}{3 \pi}\)B. \(\frac{2}{\pi}\)C. \(\frac{4}{\pi}\)D. \(\frac{-4}{3 \pi}\)E. \(\frac{-2}{\pi}\)F. \(\frac{-4}{\pi}\)7. Let \(f(x)\) be periodic...

  • Consider the linear system A.r = b where A = 1

    Consider the linear system \(A x=b\) where \(A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right], b=\left[\begin{array}{l}1 \\ 1\end{array}\right], x=\left[\begin{array}{l}1 \\ 1\end{array}\right]\).We showed in class, using the eigenvlaues and eigenvectors of the iteration matrix \(M_{G S}\), that for \(x^{(0)}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{T}\) the error at the \(k^{t h}\) step of the Gauss-Seidel iteration is given by$$ e^{(k)}=\left(\frac{1}{4}\right)^{k}\left[\begin{array}{l} 2 \\ 1 \end{array}\right] $$for \(k \geq 1\). Following the same procedure, derive an analogous expression for the error in Jacobi's method for the same system.

  • Given an LTI system with

    Given an LTI system with$$ \begin{aligned} &A=\left(\begin{array}{cc} 1 / 2 & 0 \\ 0 & -1 / 4 \end{array}\right), B=\left(\begin{array}{l} 0 \\ 1 \end{array}\right), C=(1-1), \\ &D=0 \quad X(0)=\left(\begin{array}{l} -1 \\ -1 \end{array}\right), U(n)=(-1)^{n} u[n] \end{aligned} $$Calculate \(y[n], y[4]\) and \(y[\) Steady State \(]\)

  • op-amp & capacitorplease solve this problem6.76 Given the network in Fig. P6.76. (a) Determine...

    op-amp & capacitorplease solve this problem6. 76 Given the network in Fig. \(\mathrm{P} 6.76 .\)(a) Determine the equation for the closed-loop gain \(|\mathrm{G}|=\left|\frac{v_{0}}{v_{i}}\right|\)(b) Sketch the magnitude of the closed-loop gain as a function of frequency if \(R_{1}=1 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega\), and \(C=2 \mu \mathrm{F}\).

  • Find the eigenvalues and eigenvectors of the matrix.

     Find the eigenvalues and eigenvectors of the matrix. $$ A=\left[\begin{array}{ccc} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{array}\right] $$

  • 1. Solve the system: x' =3x+5y, y' =-x-y2. Find the general solution to

    Solve the system: \(x^{\prime}=3 x+5 y, y^{\prime}=-x-y\)Find the general solution to$$ \vec{x}^{\prime}=\left(\begin{array}{ll} 2 & 1 \\ 0 & 2 \end{array}\right) \vec{x} $$Find the general solution to$$ \vec{x}^{\prime}=\left(\begin{array}{ccc} 3 & 0 & -2 \\ 0 & 5 & 0 \\ 2 & 0 & 3 \end{array}\right) \vec{x} $$

  • Use A-1 to solve the following system of linear exuations

    Let \(A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 1 & -5 & 1 \\ 2 & -7 & 1\end{array}\right]\)a) Compute \(A^{-1} .\)b) Use \(A^{-1}\) to solve the following system of linear exuations:$$ \begin{array}{r} 2 x_{1}+-x_{3}=3 \\ x_{1}-5 x_{2}+x_{3}=1 \\ 2 x_{1}-7 x_{2}+x_{3}=4 \end{array} $$

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT