Question


YUU SIIULIU L a e yull SWOIS WILll lie PUSULU SULULIUS. Lavas, 2 Defining the cross product The cross product of two nonzero

Defining the cross product The cross product of two nonzero vectors \(\vec{u}\) and \(\vec{v}\) is another vector \(\vec{u} \times \vec{v}\) with magnitude

$$ |\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin (\theta), $$

where \(0 \leq \theta \leq \pi\) is the angle between the two vectors. The direction of \(\vec{u} \times \vec{v}\) is given by the right hand rule: when you put the vectors tail to tail and let the fingers of your right hand curl from \(\vec{u}\) to \(\vec{v}\) the direction of \(\vec{u} \times \vec{v}\) is the direction of your thumb, orthogonal to both \(\vec{u}\) and \(\vec{v}\).

Evaluating the cross product. Let \(\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}\) and \(\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}\). Then

\(\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|=\left|\begin{array}{ll}u_{2} & u_{3} \\ v_{2} & v_{3}\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}u_{1} & u_{3} \\ v_{1} & v_{3}\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}u_{1} & u_{2} \\ v_{1} & v_{2}\end{array}\right| \mathbf{k}\)

(1) Let \(\vec{v}=\vec{i}+2 \vec{j}-3 \vec{k}\) and \(\vec{w}=\vec{i}-2 \vec{j}+\vec{k}\). Find the following:

(a) \(\overrightarrow{\vec{v} \cdot \vec{w}}\)

(d) Find a unit vector orthogonal to both \(\vec{v}\)

(b) \((\vec{v} \cdot \vec{w}) \vec{w}\)

and \(\vec{w}\)

(c) The angle between \(\vec{v}\) and \(\vec{w}\)

(e) \(\operatorname{proj}_{\vec{v}} \vec{w}\).

(2) Let \(\vec{u}, \vec{v}\), and \(\vec{w}\) be vectors. For each of the following expressions, identify whether the resulting value is a scalar, a vector, or the expression is not defined. If it is not defined, explain why. If a cross product is involved, assume the vectors are in three dimensions. If a division is involved, assume the denominator is nonzero.

(a) \(\vec{u}^{2}\)

(d) \(\vec{u} \times(\vec{v} \cdot \vec{w})\)

(g) \(\frac{\vec{u} \times \vec{w}}{\vec{v} \cdot \vec{w}}\)

(b) \(|\vec{u}|^{2}\)

(e) \(|\vec{u}| \times|\vec{v}|\)

(h) \(\frac{\vec{u} \cdot \vec{w}}{\vec{v} \times \vec{w}}\)

(c) \((\vec{u} \times \vec{v}) \cdot \vec{w}\)

(f) \(\frac{\vec{u} \cdot \vec{w}}{\vec{v} \cdot \vec{w}}\)

1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

W-ì -21 + Ã 1/ Geoven that, I = 1 + 2 1 - 3k 3) 7.5 = (+23–38). (7_23+) = $(1)+ (%)(-3) +(-3)0 -l-u o 7. π = j j = BOK=17 Mo- now, yxw = } Ř 1 2 -3 1-21) = 1 (2-6) - 5 (1 + 3) + (-2-2) ==4) 1764)] + (-4) Ř 1px ) = Verant conteyn = V 48 = 403 - Tx Wm 87 hef ū, ), w be three vectors. a lūla1 = sealar? The square of a vector is the t square of its modulus , 12= scalar F: S* = vector reux was a vector l ved a seadas L so, realor . Gee vee Nona zero scolo vector 1 now = Sealar I Dxhela vector L s

Add a comment
Know the answer?
Add Answer to:
Defining the cross product The cross product of two nonzero vectors
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Consider the 3 × 3 matrices

    3. (3pts) Consider the \(3 \times 3\) matrices \(B=\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & 0 & 4 \\ 0 & 0 & 1\end{array}\right]\) and \(A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]\), where \(\mathbf{a}_{1}\), \(\mathbf{a}_{2}\), and \(\mathrm{a}_{9}\) are the columns of \(A\). Let \(A B=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]\), where \(v_{1}, v_{2}\), and \(v_{3}\) are the columns of the product. Express a as a linear combination of \(\mathbf{v}_{1}, \mathbf{v}_{2}\), and \(\mathbf{v}_{3}\).4. (3pts) Let \(T(x)=A x\) be the linear transformation given by$$...

  • Use the Divergence Theorem to evaluate

    Use the Divergence Theorem to evaluate \(\iint_{S} \mathbf{F} \cdot d \mathbf{S}\), where \(\mathbf{F}(x, y, z)=z^{2} x \mathbf{i}+\left(\frac{y^{3}}{3}+\cos z\right) \mathbf{j}+\left(x^{2} z+y^{2}\right) \mathbf{k}\) and \(S\) is the top half of the sphere \(x^{2}+y^{2}+z^{2}=4\). (Hint: Note that \(S\) is not a closed surface. First compute integrals over \(S_{1}\) and \(S_{2}\), where \(S_{1}\) is the disk \(x^{2}+y^{2} \leq 4\), oriented downward, and \(S_{2}=S_{1} \cup S\).)

  • Given below is the KCL equation of a circuit. Draw the circuit.

    Given below is the KCL equation of a circuit. Draw the circuit. \(\left[\begin{array}{ccc}1+\frac{1}{4}+\frac{1}{3} & -\frac{1}{4} & -\frac{1}{3} \\ -\frac{1}{4} & 1+\frac{1}{4}+\frac{1}{3} & -1 \\ -\frac{1}{3} & -1 & 1+\frac{1}{3}+\frac{1}{5}\end{array}\right]\left[\begin{array}{c}V_{1} \\ V_{2} \\ V_{3}\end{array}\right]=\left[\begin{array}{c}10 \\ -20 \\ 0\end{array}\right]\)

  • Consider the heat conduction problem

    5. If \(f(x)=\left\{\begin{array}{cc}0 & -2<x<0 \\ x & 0<x<2\end{array} \quad\right.\)is periodio of period 4 , and whose Fourier series is given by \(\frac{a_{0}}{2}+\sum_{n=1}^{2}\left[a_{n} \cos \left(\frac{n \pi}{2} x\right)+b_{n} \sin \left(\frac{n \pi}{2} x\right)\right], \quad\) find \(a_{n}\)A. \(\frac{2}{n^{2} \pi^{2}}\)B. \(\frac{(-1)^{n}-1}{n^{2} \pi^{2}}\)C. \(\frac{4}{n^{2} \pi^{2}}\)D. \(\frac{2}{n \pi}\)\(\mathbf{E}_{1} \frac{2\left((-1)^{n}-1\right)}{n^{2} \pi^{2}}\)F. \(\frac{4}{n \pi}\)6. Let \(f(x)-2 x-l\) on \([0,2]\). The Fourier sine series for \(f(x)\) is \(\sum_{w}^{n} b_{n} \sin \left(\frac{n \pi}{2} x\right)\), What is \(b, ?\)A. \(\frac{4}{3 \pi}\)B. \(\frac{2}{\pi}\)C. \(\frac{4}{\pi}\)D. \(\frac{-4}{3 \pi}\)E. \(\frac{-2}{\pi}\)F. \(\frac{-4}{\pi}\)7. Let \(f(x)\) be periodic...

  • I have the first method complete, but I can't figure out thesecond method. I have...

    I have the first method complete, but I can't figure out the second method Could someone please show how to use the second method?2. Find the unit step response of:$$ \begin{aligned} \dot{\overrightarrow{\mathbf{x}}}(t) &=\left[\begin{array}{cc} 0 & 1 \\ -2 & -2 \end{array}\right] \overrightarrow{\mathbf{x}}(t)+\left[\begin{array}{l} 1 \\ 1 \end{array}\right] u(t) \\ y(t) &=\left[\begin{array}{cc} 2 & 3 \end{array}\right] \overrightarrow{\mathbf{x}}(t) \end{aligned} $$by two methods (1): transfer function and then (2) \(y(t)=\mathbf{C} e^{\mathbf{A} t} \overrightarrow{\mathbf{x}}(0)+\mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) d \tau+\mathbf{D} u(t)\). Re-member that the Laplace...

  • Find for the given F and C

    Find \(\int_{C} \vec{F} \cdot d r\) for the given \(\vec{F}\) and \(C\).\(\cdot \vec{F}=-y \vec{i}+x \vec{j}+7 \vec{k}\) and \(C\) is the helix \(x=\cos t, y=\sin t r \quad z=t\), for \(0 \leq t \leq 2 \pi .\)$$ \int_{C} \vec{F} \cdot d \vec{r}= $$Find \(\int_{C} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}\) for \(\overrightarrow{\mathrm{F}}=e^{y} \overrightarrow{\mathrm{i}}+\ln \left(x^{2}+1\right) \overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}}\) and \(C\), the circle of radius 4 centered at the origin in the \(y z\)-plane as shown below.$$ \int_{C} \vec{F} \cdot d \vec{r}= $$

  • Find a basis for the vector space W spanned by the vectors

    Find a basis for the vector space W spanned by the vectors$$ \overrightarrow{v_{1}}=(1,2,3,1,2), \overrightarrow{v_{2}}=(-1,1,4,5,-3), \overrightarrow{v_{3}}=(2,4,6,2,4), \overrightarrow{v_{4}}=(0,0,0,1,2) $$(Hint: You can regard W as a row space of an appropriate matrix.)Using the Gram-Schmidt process find the orthonormal basis of the vector space W from the previous questionLet \(\vec{u}=(2,3,4,5,7)\). Find pro \(j_{W} \vec{u}\) where \(\mathrm{W}\) is the vector subspace form the previous two questions.

  • Find the Trace of B

    3. Let \(\quad B=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\).(a) Find the Trace of B.(b)  Find \(B^{-1}\), the inverse of \(B\).(c) A vector \(\vec{v}\) is an eigenvector of the matrix \(B\) if Matrix-Vector Multiplication \(B \vec{v}\) results in a scaling of the vector \(\vec{v}\). (i.e. \(B \vec{v}=c \vec{v}\), with \(c\) a real number.) Using the definition of Matrix-Vector Multiplication show that the vector \(\vec{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\) is an eigenvector of \(B\) with eigenvalue \(c=3\).

  • Exact answer/fraction

    Evaluate \(\int_{C} \mathrm{~F} \cdot d \mathbf{r}\) using the Fundamental Theorem of Line Integrals. Use a computer algebra system to verify your results.$$ \int_{C}[4(2 x+7 y) \mathbf{i}+14(2 x+7 y) \mathbf{j}] \cdot d \mathbf{r} $$C: smooth curve from \((-7,2)\) to \((3,2)\)Evaluate \(\int_{C} \mathrm{~F} \cdot d \mathbf{r}\) using the Fundamental Theorem of Line Integrals. Use a computer algebra system to verify your results.$$ \int_{C} \cos (x) \sin (y) d x+\sin (x) \cos (y) d y $$C: line segment from \((0,-\pi)\) to \(\left(\frac{3 \pi}{2},...

  • Determine the Fourier series representation of

    Let \(\left.x_{(} t\right)=\left\{\begin{array}{rr}t, & 0 \leq t \leq 1 \\ -t, & -1 \leq t \leq 0\end{array}\right.\), be a periodic signal with fundamental period of \(T=2\) and Fourier series coefficients \(a_{k}\).a) Sketch the waveform of \(x(t)\) and \(\frac{d x(t)}{d t}\) b) Calculate \(a_{0}\) c) Determine the Fourier series representation of \(g(t)=\frac{d x(t)}{d t}d) Using the results from Part (c) and the property of continuous-time Fourier series to determine the Fourier series coefficients of \(x(t)\)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT