Question

ENGR 135 Numerical conduction project, Part 1: 2D steady state conduction A tube with length of 1 m is made from steel (k-15 W/m/K) having a square cross section with a circular hole through the center, as shown below. Calculate the steady state temperature distribution across the cross section and the total rate of heat transfer if the inner surface is held at 20 °C, and the outer surface is held at 100 °C. How does the heat rate vary with grid resolution? Consider 10, 20, 30, 40, and 50 grid points across the width of the cross section Compare the heat rate to an exact solution. Calculate the steady state temperature distribution across the cross section and the total rate of heat transfer if the inner surface is exposed to a fluid with temperature 20 °C resulting in a heat transfer coefficient of 250 W/m2/K, the left and right outer sides are held at 100 °C, and the top and bottom outer sides are insulated. - Hint: Use the symmetry of the problem to reduce your work. Steel 150 mm 75 mm

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
ENGR 135 Numerical conduction project, Part 1: 2D steady state conduction A tube with length of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Evaluate using MATLAB. The problem has been solved arithmatically but MATLAB code is needed. Use Matlab...

    Evaluate using MATLAB. The problem has been solved arithmatically but MATLAB code is needed. Use Matlab to evaluate: A tube with length of 1 m is made from steel (k 15 W/m/K) having a square cross section with a circular hole through the center, as shown below Calculate the steady state temperature distribution across the cross section and the total rate of heat transfer if the inner surface is held at 20 °C, and the outer surface is held at...

  • A tube with length of 1 m is made from steel (k 15 W/m/K) having a...

    A tube with length of 1 m is made from steel (k 15 W/m/K) having a square cross section with a circular hole through the center, as shown below Calculate the steady state temperature distribution across the cross section and the total rate of heat transfer if the inner surface is held at 20 °C, and the outer surface is held at 100 °C. How does the heat rate vary with grid resolution? Consider 9 and 17 grid points across...

  • Consider two-dimensional, steady-state conduction in a square cross section with prescribed surfa...

    need help with c and d Consider two-dimensional, steady-state conduction in a square cross section with prescribed surface temperatures shown in the figure. 2) 100°C a) Determine the temperatures at nodes 1, 2, 3, and 4 Estimate the midpoint temperature. Reducing the mesh size by a factor of 2, determine the corresponding nodal temperatures. Compare your results with those from the coarser grid. b) 50°C 200°c c) If the body generates heat at a rate of 20,000 W/m determine the...

  • Two-Dimensional Steady and Transient Conduction - Cooling a very large scale microelectronic chip, A simplified representation...

    Two-Dimensional Steady and Transient Conduction - Cooling a very large scale microelectronic chip, A simplified representation for cooling in very large-scale integration (VLSI) of microelectronics is shown in the sketch below. A silicon chip is mounted in a dielectric substrate, and one surface of the system is convectively cooled, while the reminding surfaces are well insulated from the surrounding. The problem is rendered two dimensional by assuming the system to be very large in the direction perpendicular to the paper....

  • 1. Consider 1D conduction along connected bars (no heat loss, steady state), with the length and...

    1. Consider 1D conduction along connected bars (no heat loss, steady state), with the length and temperature profile given in the figure. a) Google the thermal conductivity of bulk Si. b) Find out the thermal conductivity of the unknown material and the thermal contact resistance between two bars (per unit cross-section area). A320 K Temperature (K) Silicon - 310 K 308 K 300 K Unknown material 50 mm 100 mm x Silicon Unknown material

  • Steady-State Conduction 3.25 Approximately 10° discrete electrical components can single integrated circuit (chip), with 30,000 W/m...

    Steady-State Conduction 3.25 Approximately 10° discrete electrical components can single integrated circuit (chip), with 30,000 W/m 27 abe- be placed electrical heat dissipation The chip, which is very thin, is exposed to a tric liquid at its outer surface, with h, = 1000 W/m2 K and T inner surface. The thermal contact resistance between the chip and the board is 10 m K/W, and the board thickness and thermal conductivity are L and kp 1 W/m K, respectively. The other...

  • W kg m-K m3 Two-Dimensional Steady and transient Conduction - Heat Sink Aluminum fins with triangle...

    W kg m-K m3 Two-Dimensional Steady and transient Conduction - Heat Sink Aluminum fins with triangle profiles (k = 290 p = 2800 ,C= 900 shown in the accompanying figure, are used to remove heat from a surface kg-K whose temperature is T, = 150°C. The temperature of the surrounding air is 20°C. The natural heat transfer coefficient associated with the surrounding air is h = 190, Determine the temperature distribution along a fin. w m-K Air To, h 20...

  • Use k=320 W/mK for your calculation w m-K Two-Dimensional Steady and transient Conduction - Heat Sink...

    Use k=320 W/mK for your calculation w m-K Two-Dimensional Steady and transient Conduction - Heat Sink Aluminum fins with triangle profiles (k = 370- p=2800 kg 900 shown in the accompanying figure, are used to remove heat from a surface whose temperature is Tg = 150°C. The temperature of the surrounding air is 20°C. The natural heat transfer coefficient associated with the surrounding air is h = 190- Determine the temperature distribution along a fin. w m- T., 20 mm...

  • Use k=320 W/mK for your calculation w m-K Two-Dimensional Steady and transient Conduction - Heat Sink...

    Use k=320 W/mK for your calculation w m-K Two-Dimensional Steady and transient Conduction - Heat Sink Aluminum fins with triangle profiles (k = 370- p=2800 kg 900 shown in the accompanying figure, are used to remove heat from a surface whose temperature is Tg = 150°C. The temperature of the surrounding air is 20°C. The natural heat transfer coefficient associated with the surrounding air is h = 190- Determine the temperature distribution along a fin. w m- T., 20 mm...

  • Use k=320 W/mK for your calculation Two-Dimensional Steady and transient Conduction - Heat Sink Aluminum fins...

    Use k=320 W/mK for your calculation Two-Dimensional Steady and transient Conduction - Heat Sink Aluminum fins with triangle profiles (k = 370 .p=2800 900 ke), shown in the accompanying figure, are used to remove heat from a surface whose temperature is T, = 150°C. The temperature of the surrounding air is 20°C. The natural heat transfer coefficient associated with the surrounding air is h = 190 Determine the temperature distribution along a fin. 20 mm 150°C

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT