Question

5.61 Saturated, x-196, water at 25°C is contained in a hollow spherical aluminum vessel with inside diameter of 0.5 m and a 1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

O 434 6 : 、 YO H,o = o.IS06 T2-T, aiu2 £iso -45) SJ

Add a comment
Know the answer?
Add Answer to:
5.61 Saturated, x-196, water at 25°C is contained in a hollow spherical aluminum vessel with inside...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm pressure) is -196°C. Therefore, nitroge...

    The boiling temperature of nitrogen at atmospheric pressure at sea level (1 atm pressure) is -196°C. Therefore, nitrogen is commonly used in low-temperature scientific studies since the temperature of liquid nitrogen in a tank open to the atmosphere will remain constant at -196°C until it is depleted. Any heat transfer to the tank will result in the evaporation of some liquid nitrogen, which has a heat of vaporization of 198 kJ/kg and a density of 810 kg/m3 at 1 atm....

  • A two-phase, liquid-vapor mixture of H2O, initially at x = 30% and a pressure of 100 kPa, is...

    A two-phase, liquid-vapor mixture of H2O, initially at x = 30% and a pressure of 100kPa, is contained in a piston-cylinder assembly, as shown in Fig. The mass of the pistonis 10kg, and its diameter is 15 cm. The pressure of the surroundings is 100kPa. As thewater is heated, the pressure inside the cylinder remains constant until the piston hits the stops. Heat transfer to the water continues at constant volume untilthe pressure is 150 kPa. Friction between the piston...

  • A mass of 5.5 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder...

    A mass of 5.5 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder at 101.325 kPa. Initially, 2.3 kg of the water is in the liquid phase and the rest is in the vapor phase. Heat is now transferred to the water, and the piston, which is resting on a set of stops, starts moving when the pressure inside reaches 300 kPa. Heat transfer continues until the total volume increases by 21 percent. Determine: a) the initial...

  • A mass of 5 kg of saturated liquid-vapor mixture of water is contained in a piston-...

    A mass of 5 kg of saturated liquid-vapor mixture of water is contained in a piston- cylinder device at 125 kPa. Initially. 3 kg of the water is in the liquid phase and the rest is in the vapor phase. Heat is now transferred to the water, and the piston, which is resting on a set of stops, starts moving when the pressure inside reaches 300 kPa. Heat transfer continues until the total volume increases by 10%. We denote the...

  • A water-vapor mixture with a mass of 0.5 kg of at a quality of 50% is...

    A water-vapor mixture with a mass of 0.5 kg of at a quality of 50% is initially contained in a piston-cylinder assembly. The piston is unrestrained and it is weighted such that it maintains a constant pressure of 500 kPa inside the cylinder. Heat is transferred to the cylinder from a thermal energy source until the steam reaches saturated vapor conditions. Determine: (a) the total heat transfer, (b) the total amount of entropy production for the entire process, (c) Indicate...

  • Question Number 1 (25 Marks) A mass of 0.5 kg of ammonia is contained in a...

    Question Number 1 (25 Marks) A mass of 0.5 kg of ammonia is contained in a piston-cylinder assembly, initially at T1 = -20°C and U1 = 391.11 kJ/kg. The ammonia is slowly heated to state 2, where T2 = 20°C and P2 = 0.6 MPa, and the pressure varies linearly with specific volume during this process. From state 2, the system isºcompressed at constant pressure until the ammonia becomes a fully saturated vapor. Assume that there are no significant change...

  • 4. (25 pts) Water is flowing inside a thin wall, smooth pipe of diameter 0.05 m...

    4. (25 pts) Water is flowing inside a thin wall, smooth pipe of diameter 0.05 m at a mass flowrate of 0.3 kg/s. The water enters the pipe at a mean temperature Tm,i= 80 °C and exits at Tm,o= 80 °C while the pipe surface temperature is maintained at Ts= 20 °C along its entire length. a. Is the flow turbulent or laminar? b. Calculate the average convection heat transfer coefficient inside the tube. c. Calculate the length of the...

  • 25 PRR HEAT TRANSFER NAME: UNIT SIX AND SEVEN EXCHANGERS BOILING AND CONDENSATION, He- Solve the following problems:...

    25 PRR HEAT TRANSFER NAME: UNIT SIX AND SEVEN EXCHANGERS BOILING AND CONDENSATION, He- Solve the following problems: 1. In a gas-faired boiler, water is boiler at 150 C by hot gases flowing through 59 m long, 5 cm outer diameter mechanically polished stailess-stell pipes submerged in water, If the outer surface temperature of the pipes is 180 °C. determine (a) the rate of heat transfer from the hot gases to water. (b) the rate of evaporation, (c) the ratio...

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • 1. Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C...

    1. Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C and leaves the tubes at 6 MPa and 450°C with a velocity of 80 m/s. Calculate the velocity of the water at the tube inlet and the inlet volume flow rate. [5-14] 2. Air enters a nozzle steadily at 50 psia, 140°F, and 150 ft/s and leaves at 14.7 psia and 900 ft/s. The heat loss from the nozzle is estimated to be 6.5...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT